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Introduction 

India is a vast country consisting of altogether 35 states and union territories. With a long 

civilization and hence a rich history, the country naturally developed its own methods of 

time keeping. Due to cultural diversification, these methods vary in different regions and 

variations in the Indian (Hindu) calendar-making emerged. 

Today, there are several calendars being used in India. The government uses the 

Gregorian calendar for administrative purposes. The Muslims use the Muslim (Islamic) 

calendar. The Indian solar and lunisolar calendars, including their variations, are used for 

both civil and religious purposes and hence exert great influence on the daily activities of 

the people of India. The aim of this thesis is to describe the workings of the Indian solar 

and lunisolar calendars. The rules and principles that guide the calendars will be 

explained in a simple and systematic way for readers to understand. 

The first chapter introduces basic astronomical concepts required to understand 

the fundamental units of time, namely, the day, the month and the year. In the second 

chapter, we start to classify calendars into solar, lunar and lunisolar calendars. In the last 

chapter, we will focus on the conventions that are used for making the Indian solar and 

lunisolar calendars. We start with a brief introduction of the Indian calendars which are 

used in India. Then we proceed with the discussion of the Indian solar and lunisolar 

calendars respectively. Finally, we present a number of computer codes to generate the 

dates of some Indian solar and lunisolar calendars.  
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Statement of Author’s Contributions 

My thesis provides explanation for the rules behind Indian calendar-making. Honestly 

speaking, I have spent tremendous effort and time to write and organize my thesis so that 

it is easy for readers to follow.  

In addition to the thesis, I have also written computer codes to produce the dates 

of some Indian calendars that will be mentioned in Chapter 3. I call them the calendar 

codes. These codes are included in the appendix section. They are basically modification 

and piecing of some of the computer codes obtained from the Mathematica package 

Calendrica.m written by Nachum Dershowitz and Edward M. Reingold. My supervisor 

and I worked together to discuss the ideas and approaches to write the algorithms for the 

calendar codes. 

True longitudes of the Sun and the Moon are essential data that has to be included 

in the algorithms of the calendar codes. Calendrica.m contains computer codes to give the 

values of these longitudes. However, Nachum Dershowitz and Edward M. Reingold 

wrote their algorithms basing on old Siddhantic methods. This causes their outputs to 

differ from the longitudes obtained using modern methods. I will explain what Siddhantic 

and modern methods are in Chapter 3. As for a detailed description of their algorithms 

basing on the Siddhantic methods, it can be found in reference book (10).  

Because of time constraint, I could not debug their computer codes for finding the 

longitudes. I have used them directly in my algorithms. Nevertheless, I have come up 

with codes to give, as accurate as possible, other information that are necessary to run the 

calendar codes correctly. They are the Indian Standard Time (IST) for sunrise, sunset, 

aparahna, new moon and full moon. Again, we will come to the definitions and the 

reasons as to why these times are important in Chapter 3. The following is a list of the 

computer and calendar codes that I have written: 

 
 ujjainSunrise 

 ujjainSunset 

 ujjainAparahna 

 orissaHinduSolar 

 tamilHinduSolar 
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 malayaliMonth 

 malayaliYear 

 malayaliHinduSolar 

 bengalHinduSolar 

 IndianNewMoonAtOrBefore 

 amantaSouthHinduLunar  

 checkSkippedRasiForEasternRule 

amantaEastHinduLunar 

checkSkippedRasiForNorthWesternRule 

 amantaNorthWestHinduLunar 

 IndianFullMoonAtOrBefore 

 
I have tested the codes above by comparing the outputs with some of the actual 

data obtained from reference books (7) and (11). I find that the codes to give the IST for 

sunrise, sunset and aparahna are accurate within about 5 minutes. For those on IST for 

new moon and full moon, the discrepancy is about a minute. However, the generated 

Indian calendar dates may differ from the actual date by a day. In addition, the 

occurrence of kshaya months, leap months and leap days may not tally with those 

indicated in the actual lunisolar calendars. I will give the definitions of kshaya and leap 

months and leap days later in Chapter 3.  

Errors in generating the Indian calendar dates from the codes occur because for 

making the actual Indian calendars, modern methods are employed to measure longitudes 

of the Sun and the Moon. These values are more accurate than the ones obtained by 

Siddhantic methods which are being used in the calendar codes. Hence there is a need to 

produce algorithms to calculate the true longitudes of the Sun and the Moon using 

modern methods. With this correction, the accuracy of the calendar codes that I have 

obtained can be improved and perhaps some other codes can be written to determine the 

dates of important Indian festivals and religious events.   
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Chapter 1: Astronomical Bases of Calendars 

A calendar is a system of organizing units of time for the purpose of reckoning time over 

extended period. The natural units of time are the day, the month and the year. They are 

based on the Earth’s rotation on its axis, the Moon’s revolution around the Earth and the 

Earth’s revolution around the Sun respectively. In this chapter, we will look at the 

essential astronomical concepts that are needed to define these units of time. I obtain 

most information from the references (1) and (6) available in my supervisor’s website. 

Reference book (3) contains more details on ancient astronomy.  

 

The Earth and the Sun 

The Earth revolves anticlockwise around the Sun in an elliptical orbit, the plane of which 

is called the plane of the ecliptic. At the same time, the Earth rotates anticlockwise on its 

own axis. This axis is tilted from the pole of the plane of the ecliptic by 23.50. The 

Earth’s rotation will cause an observer on Earth to see the Sun as rising from the east and 

setting in the west.  

 

Figure 1: The plane of the Ecliptic 
 

 
 

Kepler’s Laws  

The Earth’s revolution around the Sun obey Kepler’s first two laws of planetary motion, 

namely, 

1. The orbit of a planet around the Sun is an ellipse with the Sun at one focus of the 

ellipse. 

2. The radial line that joins a planet to the Sun sweeps out equal areas in equal 

intervals of time. 

The first law explains the Earth’s elliptical orbit around the Sun. The second law implies 

that the Earth’s velocity along the elliptical orbit is not uniform. In fact, the Earth moves 
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faster along the orbit around the perihelion, the point where it is closest to the Sun, and 

slower when it is around the aphelion, the point where the Earth is farthest away from the 

Sun.  

 

Figure 2: Kepler’s first two laws  
 

 
 

 

The Equinoxes and Solstices 

Besides the perihelion and aphelion, the Equinoxes and Solstices are also important 

positions on the ecliptic. As the Earth revolves around the Sun, the two positions at which 

the projection of the Earth’s axis onto the plane pointing directly towards the Sun are 

called the June (Summer) and December (Winter) Solstices. On the other hand, the two 

positions at which the radial line from the Sun to the Earth is perpendicular to the Earth’s 

axis are the March (Spring or Vernal) and September (Autumnal) Equinoxes. These four 

positions are often known as the seasonal markers. 

 
Figure 3: The Seasonal Markers 
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Some people make the mistake thinking that the June Solstice and aphelion (or 

the December Solstice and perihelion) should coincide all the time. This is not always 

true. To understand why, we need to know precession of the Equinoxes.    

 

Precession of the Equinoxes  

Under gravitational attractions of the Sun, the Moon and the planets, the Earth’s axis 

undergoes a slow, conical clockwise motion, with a period of about 25800 years, around 

the pole of the ecliptic and maintains the same inclination to the plane of the ecliptic. 

This causes the March Equinox to slide westward on the ecliptic at a rate of about 50.2’’ 

per year. We call this precession of the Equinoxes. 

 

Figure 4: Precession of the Equinoxes 
 

 
 

The Celestial Sphere 

The model that is used above to describe the motions of the Earth and the position of the 

seasonal markers is a heliocentric model where the Sun is taken to be at the centre. 

Ancient astronomers, however, adopted the geocentric model which has the Earth placed 

in the middle of the Celestial Sphere. The Celestial Sphere is an imaginary sphere around 

the Earth. Stars appear on the inner surface of the sphere as points of light. The Sun, the 

Moon and the stars are seen to rotate from east to west.  

The Earth’s rotational axis extends to meet the sphere in the north and south 

celestial poles. The celestial equator, an extension of the Earth’s equator to meet the 

sphere, is the great circle midway between the poles. The path of the Sun across the 

Celestial Sphere is a great circle called the ecliptic. It is an extension of the Earth’s 
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elliptical orbit around the Sun to meet the sphere. The plane of this ecliptic makes an 

angle of 23.50 with the celestial equator.  

The points at which the ecliptic intersects the celestial equator are the Equinoxes 

while the points at which the ecliptic and the celestial equator are farthest apart are the 

Solstices. We will use either of these models for our calendar discussion. 

 

Figure 4: The Celestial Sphere 
 

 
 

The Moon 

The Moon shines by reflected sunlight. Half of the Moon that faces towards the Sun is 

always illuminated. An observer on Earth will see the Moon as rising from the east and 

setting in the west like the Sun. At the same time, the Moon revolves anticlockwise 

around the Earth causing different lunar phases to occur.  

When the Moon is in conjunction with the Sun, that is, when the Moon is directly 

between the Sun and the Earth, the unilluminated half faces us. We called this new moon. 

At this time, the Moon rises and sets approximately at the same time as the Sun. A few 

days after conjunction, we can see the waxing crescent at night.  

As the Moon moves anticlockwise in its orbit around the Earth, it begins to rise 

(and set) after the Sun does so we can gradually see more of the Moon. Then the Moon 

reaches its first Quarter.  
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As the Moon’s orbit continues, there is a time when the Moon is in opposition to 

the Sun, meaning that the Moon is aligned with the Sun and the Earth but on the opposite 

side of the Earth. We called this full moon. At this time, the Moon rises at sunset and sets 

at sunrise.  

Gradually, we see the Moon growing smaller, reaching its third Quarter and then 

its waning crescent before new moon occurs again. We can say that a lunar phase cycle 

has completed in this case.  

 

Figure 6: Phases of the Moon 

 

 

 

The Units of Time 

As the Earth rotates with respect to the Celestial Sphere, the Sun, the Moon and the stars 

are seen to move across the sky from east to west. We see that the alternation of daylight 

and night happens much more frequently than the lunar phases and the seasons. Hence 

astronomers relate the day with a complete rotation of the Earth on its axis. 

 
The Day 

The day is taken to be the mean solar day. It is the average interval between two 

successive passages of the Sun over the meridian of a place. Sometimes, the meridian is 

taken to be the position when the Sun is directly above the place, that is, when it is at 

noon. Hence, we can also define the day, or equivalently the mean solar day, to be the 

mean time taken from one noon transit of the Sun to the next. The day, of length 24 h, is 
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the smallest unit and is taken to be the fundamental unit of time. The lengths of months 

and years are expressed in terms of the day as the unit. 

 
The Month 

The sidereal month is the time in which the Moon completes one revolution around the 

Earth and returns to the same position in the sky. Its length is about 27d7h43m14.88s 

(27.3217 days). However, the Moon has not completed a revolution around the Earth 

with respect to the Sun because during this time, the Earth and the Moon have also 

revolved about 270 around the Sun.  

For calendrical calculation, the synodic month is used. It is defined to be the time 

interval between two successive new moons. The mean length is about 29d12h44m3.84s 

(29.5306 days). The actual length can vary up to 7 hours owing to eccentricity of the 

moon’s orbit and complicated interactions between the Earth, the Moon and the Sun. 

 

Figure 7: Sidereal month and Synodic month 
 

 
 
The Year 

The sidereal year is the actual time taken for the Earth to revolve once around the Sun 

with respect to the stars. The stars are fixed with respect to the elliptical orbit. The mean 

length of a sidereal year is about 365d6h9m12.96s (365.2564 days).  

The tropical year is the time interval between two successive March Equinoxes. 

Due to shortening effects of precession of the Equinoxes, the Earth makes a revolution of 

less than 3600 around the Sun to return to the March Equinox. Hence the tropical year, of 
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mean length about 365d5h48m46.08s (365.2422 days), is shorter than the sidereal year 

by about 20 minutes. 
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Chapter 2: Classification of Calendars 

In Chapter 1, we have discussed the units of time, namely, the day, the month and the 

year. They serve as natural units of calendars. These units are incommensurable, meaning 

that none of them is an integral multiple of any of the others. Ancient astronomers tried to 

find relations and had come up with different ways to structure days into larger units of 

weeks, months, years and cycle of years. The relations obtained are only approximations 

because their related astronomical cycles change slowly with time. From this situation, 

three distinct types of calendars emerge. 

 
Solar Calendar 

A solar calendar is designed to approximate the tropical year using days. In order to 

synchronize with the tropical year and hence the seasons, days are sometimes added, 

forming leap years, to increase the average length of the calendar year. A solar calendar 

year can be divided into months but these months ignore the Moon.  

The Gregorian calendar is a solar calendar with a common year having 365 days 

and a leap year having 366 days. Every fourth year is a leap year unless it is a century 

year not divisible by 400. 

 
Lunar Calendar  

A lunar calendar consists of a number of lunar months with each month covering the 

period between two successive new moons or full moons. We say that the lunar month 

follows, or depends on, the lunar cycle. Each calendar or lunar year has 12 lunar months. 

Each month has an average length of about 29.5 days. This amounts to about 12 x 29.5 = 

354 days a year, around 11 days shorter than the tropical year. Hence a lunar calendar 

ignores the tropical year and does not keep in line with the seasons.   

The Muslim calendar is a lunar calendar. We can see that the Hari Raya Puasa 

festival always falls about 11 days earlier than a year ago in the Gregorian calendar. 

 
Lunisolar Calendar  

A lunisolar calendar is designed to keep in phase with the tropical year using lunar 

months. A whole lunar month is occasionally added at every few years interval to help 
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the calendar keep up with the tropical year. This additional month is known as the leap 

month or the intercalary month. 

The Chinese calendar is a lunisolar calendar, consisting of 12 lunar months, each 

beginning at new moon. A normal calendar year has 12 months and a 13th month is added 

according to certain rules to synchronize with the tropical year. In Chapter 3, we will see 

that the Indian lunisolar calendars are made to approximate the sidereal year instead of 

the tropical year.  

 
The Metonic cycle 

The Metonic cycle is a mathematical rule to determine when a leap month should be 

added to keep the lunisolar calendar in pace with the tropical or sidereal year. The 

mathematics behind it is shown below.   

 
For the lunar months, 

Mean length of the synodic month = 29.5306 days. 

Mean length of a lunar year (making up of 12 lunar months) is (12 x 29.5306) 

days = 354.3672 days. 

In 19 lunar years with 7 leap months, there are approximately (19 x 12 + 7) x 

29.5306 days = 6939.6910 days. --- (A) 

 
For the tropical year, 

Mean length of the tropical year is 365.2422 days. 

The lunar year is short of the tropical year by (365.2422 - 354.3672) days = 

10.875 days. 

In 19 tropical years, there are 19 x 365.2422 days = 6939.6018 days. --- (B) 

 
For the sidereal year, 

Mean length of the sidereal year is 365.2564 days. 

The lunar year is short of the sidereal year by (365.2564 - 354.3672) days = 

10.8892 days. 

In 19 sidereal years, there are 19 x 365.2564 days = 6939.8716 days. --- (C) 
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From above, we see that the lunisolar calendar catches up with 19 tropical or 19 sidereal 

years by adding 7 leap months in every 19 lunar years interval. This can be seen from 

values (A), (B) and (C). On average, a leap month is added at a period of 19/7 = 2.7 

years.  

Although the Metonic cycle provides a way of determining occurrence of leap 

months, not all lunisolar calendars follow this cycle. The Indian lunisolar calendars rely 

on true positions of the Sun and the Moon to determine the occurrence of leap months.  

 
Arithmetical and Astronomical calendars  

There is another different way of grouping calendars. We can classify calendars 

that are operated by straightforward numerical rules as arithmetical calendars. The 

Gregorian calendar is an arithmetical calendar.  A normal year has 365 days and a leap 

year having 366 days. Every fourth year is a leap year unless it is a century year not 

divisible by 400. Furthermore, the lengths of months in the calendar are fixed with 

Feburary having 28 days in normal year and 29 days in a leap year. We see that there is 

an arithmetical formula to determine which year is leap. Together with lengths of months 

being fixed, we can easily and accurately construct the Gregorian calendar for a year 

which is way ahead of our present year. 

Calendars that are mainly controlled by astronomical events are astronomical 

calendars. These calendars do have some arithmetical components. However, they are 

really close approximations to their related astronomical events. The Indian solar 

calendars are astronomical calendars. Lengths of the calendar year and solar months are 

determined by the time taken for the Sun to travel along certain paths along the ecliptic. 

The process of rounding the lengths to whole numbers depends on a set of rules involving 

the occurrences of some astronomical events. Since the times of astronomical events vary 

from year to year, lengths of the calendar year and solar months also vary. Hence we 

cannot formulate any arithmetical rules to determine their lengths. We will discuss the 

Indian solar calendars in greater details later. 
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Chapter 3: The Indian Calendars 

The history of calendars in India is complex oweing to the long history of Indian 

civilization and the diversity of cultural influences. It is known that the Indians used both 

the solar and lunisolar calendar. The modern Indian calendars, that are used in India 

today, are astronomical in nature because they are close approximations to true times of 

its related astronomical events such as the travelling of the Sun along certain paths on the 

ecliptic and lunar conjunctions. 

However, before AD 1100, the old Indian calendars used the mean times. In the 

old solar calendar, mean length of a sidereal year is used to estimate the calendar year. A 

solar month is one twelfth of the calendar year. The times of sunrise and sunset were 

taken to be at 6am and 6pm respectively. With these few illustrations, we can see that old 

Indian calendars were arithmetical in character since rough approximations were used in 

the calendar-making. For more details on the old Indian calendars, one can look at 

reference book (10). 

In my thesis, we will only touch on the modern Indian calendars. I obtain the 

materials mainly from reference books (7) and (8). Information indicating the various 

regions using the different Indian calendars can be found from references (7) and (9).  

 

3.1: A Brief Introduction 

The modern Indian solar and lunisolar calendars have many local variations, and hence 

their own characteristics, due to the difference in customs and astronomical practices 

adopted by calendar-makers in different regions of India. However, they are still based on 

common calendrical principles found mainly in an ancient astronomical treatise called the 

Surya Siddhanta. 

 

3.1(a): The Surya Siddhanta 

The Surya Siddhanta contains rules of calendrical astronomy to construct the Indian solar 

and lunisolar calendars. It also includes formulae and equations to find true values of 

astronomical events and to determine true positions of the Sun and other luminaries in the 
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sky. It is not known when the treatise was originally written but its calendrical rules were 

believed to come into use as early as around AD 400 in some places of India.  

The treatise appeared to be constantly revised. However, the knowledge of 

position astronomy was not that advanced as compared to now. Hence astronomical 

values and true positions obtained by Siddhantic methods are not very accurate. They 

differ from those obtained by modern methods. Modern methods refer to scientific, 

sophisticated techniques of recording and taking measurements that are used today. To 

see the difference, let’s take the sidereal year as an example. The correct mean length of 

the sidereal year is about 365d6h9m12.96s (365.2564 days) but the value given by the 

revised Siddhanta is 365d6h12m36.52s (365.258756 days), longer than the modern value 

by about 3m23.56s. 

Despite the inaccuracy in the astronomical values, the calendrical principles found 

in the Surya Siddhanta are still regarded with veneration by calendar-makers.  The 

workings of the Indian calendars are based mainly on its calendrical principles. However, 

there seems to be a deviation in the use of astronomical values in the calendar-making. 

 

3.1(b): The Modern Panchangs and the Old Panchangs 

A panchang or ‘panjika’ is an annual publication written by Indian calendar-makers, also 

known as panchang-makers. It contains calendrical information on celebration of 

festivals, performance of ceremonies or rites and on astronomical and astrological 

matters. Every family in India possesses a panchang.  

Families in different regions of India may use different panchangs. This is due to 

the adopting of different conventions by calendar-makers in the calendar-making. Such 

inconsistency is unavoidable. However, even if a uniformed convention is applied, we 

can still group the calendar-makers into two schools. They are the Modern school and the 

Old school.  

The Modern school uses modern methods to determine astronomical events and 

data needed for making the Indian calendars and hence their modern panchangs. The Old 

school believes that the Surya Siddhanta cannot be wrong and the inaccurate Siddhantic 

methods and results continue to be used to construct the calendars and their old 

panchangs. Although at present, the existence of two different schools causes additional 
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confusion in the calendar or panchang-making, the Old school has come to realize the 

mistakes in the Siddhanta and is gradually adopting modern methods to correct them. 

  

3.1(c): Overview 

Before going into the rules and principles behind the making of the Indian calendars, we 

first present Table 1 below to show that for a given date, such as 1st Kartika Saka 1918, of 

an Indian calendar, it can indicate different days of the year of the Gregorian calendar. 

 

Table 1: The date 1st Kartika Saka 1918 with reference to different days of the year of the Gregorian 

calendar 

Name of calendar 
Gregorian calendar date 

for 1st Kartika Saka 1918 

The Orissa Calendar 16 Oct 1996 

The Tamil calendar 17 Oct 1996 

The Malayali calendar 17 Oct 1996 

The Bengal calendar 18 Oct 1996 

The National calendar 23 Oct 1996 

The Chaitra (amanta) calendar 12 Nov 1996 

The Chaitra (purimanta) calendar 27 Oct 1996 

 

Notes: 

1. The first four calendars in column 1 are the Indian solar calendars that will be introduced in Section 3.2. The 

last two calendars are the main types of the Indian lunisolar calendars and they will be discussed in Section 

3.4. 

  

2. For the Tamil calendar, the date 1st Arppisi Saka 1918 corresponds to the given date 1st Kartika Saka 1918 

since the names of solar months are different from the other calendars. In the Malayali calendar, the date 1st 

Tula Kollam 1172 corresponds to the given date 1st Kartika Saka 1918 because the names of solar months 

and the solar era in used are different.   

 

3. The given date 1st Kartika Saka 1918 represents (S) 1st Kartika Saka 1918 for the Chaitra (amanta) calendar 

and (K) 1st Kartika Saka 1918 for the Chaitra (purimanta) calendar. 

(S) refers to sukla paksha and (K) refers to krishna paksha. Their definitions are discussed in Section 3.4. 
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We also indicate on the map of India the regions where the Indian solar and lunisolar 

calendars are used. Note that the lunisolar calendars consist of the amanta and purimanta 

lunisolar calendars, which we will discuss in Section 3.4.  

In the map, the solar calendars, which we will introduce in Section 3.2, are 

generally used for civil purposes. For the lunisolar calendars, we prefix the term 

‘religious’ to the calendar if it is used mainly for religious purpose. Otherwise the 

calendar is used for civil dating. See Map 1. 

 

Map 1: Different regions in India using the Indian solar and lunisolar calendars 

 

 

Notes: 

1. The regions in white colour within the boundary of India are the states in which we have no 

information on the types of Indian calendars being use. 



 21

 

2. The solar calendars comprise the Orissa, Tamil, Malayali and Bengal calendars. The Orissa 

calendar is followed in Orissa, Punjab and Haryana. The Bengal calendar is used in West Bengal, 

Tripura and Assam. The Tamil and Malayali calendars are used in Tamil Nadu and Kerala 

respectively. 

 

3. There are three types of amanta lunisolar calendars, namely, the Chaitra, Kartika and Ashadha 

calendars. The Kartika calendar is followed in Gujarat. In a place called Kutch found in Gujarat, 

people use the Ashadha calendar.  

 

Now we shall proceed with our calendar discussion in details. In Sections 3.2 to 3.4, we 

need to note the followings, 

 

1. We will explain the Indian calendrical principles with true positions of the Sun 

and the Moon and the use of correct astronomical values obtained by modern 

methods. Astronomical data are taken at the Central station in Ujjain (Latitude: 

23011’E and Longitude: 75046’6’’N). The Indian Standard Time (IST), which is 

5h30m ahead of universal time in Greenwich, is used for time recording. For IST 

correction, we replace the longitude of Ujjain with longitude 82030’N. 

 

2. For all the Indian calendars, a civil day is taken to run from sunrise to the next 

sunrise. The civil day is also known as the panchang or savana day. 
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3.2: The Solar Calendars 

In this section, we will introduce four different Indian solar calendars. They are 

constructed using similar calendrical rules. In each solar calendar, the lengths of the 

calendar or civil year and solar months are expressed in numbers of civil days. In 

addition, the calendar is made to approximate the sidereal year rather than the tropical 

year. Let us begin with the basic structure of the Indian solar calendar. 

 

The Nirayana Year 

The nirayana year is the actual time required for the Earth to revolve once around the 

Sun with respect to a starting point on the ecliptic that is directly opposite a bright star 

called Chitra. The longitude of Chitra from this point is 1800. The Indian solar calendar is 

made to keep in phase with the nirayana year. See Figure 8 for the starting point of the 

nirayana year. 

In the year AD 285, the starting point of the nirayana year coincided with the 

March Equinox. The celestial longitude, as measured from the March Equinox, of Chitra 

was 179059’52’’ at that time. For calendrical calculations, the longitude may be taken to 

be 1800. Since the stars are fixed with respect to the ecliptic, the starting point remains 

unchanged. However, under precession of the Equinoxes, the March Equinox recedes on 

the ecliptic westward each year and by 1 January 2001, it has shifted nearly 23051’26’’ 

from the starting point. Hence the nirayana year is really a sidereal year with mean length 

about 365d6h9m12.96s (365.2564 days). This is about 20m26.88s longer than the mean 

length of the tropical year which is about 365d5h48m46.08s (365.2422 days).  

 

The Solar Month 

From the geocentric point of view of the Sun-Earth motion, a solar month is determined 

by the entrance of the Sun into a rasi. A rasi is defined to be a division that covers 300 of 

arc on the ecliptic. The ecliptic is divided into 12 such rasis. The first rasi starts from the 

same point that starts the nirayana year. See Figure 8 for the starting point of the nirayana 

year. 
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Figure 8: The starting point of the nirayana year and the rasis 

 
 

The length of a solar month is the time taken for the Sun to travel its linked rasi 

completely, that is, to pass 300 of its elliptical orbit. Hence a nirayana year has 12 solar 

months. Since the solar calendar has several local variations, the start of the nirayana year 

and names of the month may differ. For example, the Malayali calendar, to be introduced 

later, starts the calendar year at the solar month that corresponds to the Simha rasi. See 

Table 2 for the names of the rasis and their corresponding solar months in several solar 

calendars.  

 

Table 2: Relationships between rasis and solar months 
 

Rasi 
No.  

Name of 
Rasi 

Name of corresponding 
solar month in most solar 

calendars 

Name of corresponding solar 
month in the Tamil solar 

calendar 

Name of corresponding solar 
month in the Malayali (Kerala) 

solar calendar 

1 Mesha à           Vaisakha à            Chittirai Mesha 

2 Vrisha Jyaistha Vaikasi Vrisha 

3 Mithuna Ashadha Ani Mithuna 

4 Karkata Sravana Adi Karkata 

5 Simha Bhadra Avani à                 Simha 
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6 Kanya Asvina Purattasi Kanya 

7 Tula Kartika Arppisi Tula 

8 Vrischika 
Agrahayana 

(Margasirsha) Karthigai Vrischika 

9 Dhanus Pausha Margali Dhanus 

10 Makara Magha Thai Makara 

11 Kumbha Phalguna Masi Kumbha 

12 Mina Chaitra Panguni Mina 

 
à indicates the starting month of the nirayana year 
 
Notes: 

1. The rasi number in column 1 is as per notation in Figure 8. 
  
2. The solar calendars mentioned in columns 3, 4 and 5 are some different Indian solar calendar.  

 
 

From Kepler’s law, the Earth’s revolution around the Sun, or the Sun’s orbit 

around the Earth, is not uniform. This causes the length of each solar month to vary. The 

mean length of a solar month is about 30d10h29m8.16s (30.4369 days) but its actual 

length can vary from 29d10h48m (29.45 days) to 31d10h48m (31.45 days). After 

knowing the actual length of a solar month, a point is still required to begin the month.  

The first entry (ingress) of the Sun into a rasi is called a samkranti. Altogether, 

there are 12 samkrantis in a nirayana year. The samkranti can occur at any time of the 

day. Hence it is not convenient to start a solar month at the concerned samkranti. Instead, 

the beginning of a solar month is chosen to be from a sunrise that is close to its concerned 

samkranti. This will depend on certain rules of samkranti to be explained later. 

Consequently, the civil day becomes the basic unit of the Indian solar calendar.  

From the actual length of a solar month, we see that each solar month can have 29 

to 32 days. Refer to Figure 9. Consider a solar month with its length to be 29d10h48m 

(29.45 days). If its concerned samkranti falls close to, but after, a sunrise (SR0), there 

will be 28 sunrises (SR1 to SR28) falling within the solar month. We see that the solar 
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month ‘captures’ 28 days and also the day starting at (SR0). Altogether, there will be 29 

days. This process is like ‘rounding down’ the actual length of the solar month. 

 

Figure 9: Illustration on how a solar month can have 29 days 

 

 

Similarly, if the solar month, of length 31d10h48m (31.45 days), falls close to but before 

(SR1), the solar month will ‘capture’ 31 days (SR1 to SR31) and also the day, starting at 

(SR0), in which its samkranti falls. Hence there will be 32 days for that solar month. In 

this case, we have the ‘rounding up’ process instead. See Figure 10 for this illustration. 

 

Figure 10: Illustration on how a solar month can have 32 days 

 

 

These explanations hold regardless of whichever rules of samkranti the calendar follows. 

Solar months with their corresponding rasis near the aphelion will most probably 

have 32 days while solar months that are linked to rasis near the perihelion will likely to 

have 29 days. In other words, months with corresponding rasis Vrisha, Mithuna and 

Karkata can have 32 days while months with corresponding rasis Vrischika, Dhanus and 

Makara can have 29 days. 

For determining the starting day of a solar month, there are several rules of 

samkranti that can be followed. We will talk about the four common rules. 
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Rules of Samkranti: 

 

1. The Orissa rule 

Solar month begins on the same day as the samkranti.  

 

2. The Tamil rule  

Solar month begins on the same day as the samkranti if the samkranti falls before 

the time of sunset on that day. Otherwise the month begins on the following day.  

 

3. The Malayali rule 

Before stating the Malayali rule, we need to define what an aparahna for a 

particular day is. Aparahna is the point at 3/5th duration of the period from sunrise 

to sunset. For example, suppose the times of sunrise and sunset are 6am and 6pm 

respectively. Then the time of the aparahna = [(3/5) x (18 – 6) + 6]am = 1.12pm. 

Now we state the Malayali rule.  

Solar month begins on the same day as the samkranti if the samkranti occurs 

before the time of aparahna on that day. Otherwise the month starts on the 

following day.  

 

4. The Bengal rule 

When samkranti takes place between the time of sunrise and midnight on that day, 

the solar month begins on the following day. If it occurs after midnight, the month 

begins on the next following day, that is, the third day. This is the general rule. In 

some special circumstances, there are some deviations from this rule. However, 

we will focus on the general rule here. 

 

We shall call the solar calendars following the four stated rules in the order above as the 

Orissa, Tamil, Malayali and Bengal calendars respectively. There exists other 

diversification but we will not discuss them here. 
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The Calendar or Civil Year and the Solar Eras 

The Orissa, Tamil and Bengal calendars begin their civil year with the solar month that 

corresponds to the Mesha rasi. The Malayali calendar starts the year at the solar month 

that links with the Simha rasi.  

The solar eras being used in the solar calendars are the Kali Yuga, the Saka 

traditional, the Saka national, the Bengali San and the Kollam eras. See Table 3 for their 

epochs with respect to the Gregorian calendar and the solar calendars in which the eras 

are used. 

 

Table 3: Different solar eras in use and their epochs with reference to the Gregorian calendar 
 

Solar Era 
Epoch of the era with reference to the 

Gregorian calendar Calendars using the era 

Kali Yuga AD year +3101 from mid-Apr to Dec  
AD year +3100 from Jan to mid-Apr 

General era used in all India solar calendars 

Saka 
traditional 

AD year –78 from mid-Apr to Dec 
AD year –79 from Jan to mid-Apr 

Orissa, Tamil and Bengal calendars 

Saka national AD year –78 from 22 Mar to Dec 
AD year –79 from Jan to 21 Mar 

Only in the National calendar introduced by 
government of India in 1957 

Bengali San AD year –593 from mid-Apr to Dec 
AD year –594 from Jan to mid-Apr 

Bengal calendar 

Kollam AD year –824 from mid-Aug to Dec 
AD year –825 from Jan to mid-Aug 

Malayali (Kerala) calendar 

 

By now, we can look at some starting day of the Mesha rasi as per four samkranti rules 

mentioned earlier. See Table 4.  

 

Table 4: Time of transit of the Sun to the mesha rasi, length of the nirayana year and the starting day of the 
solar years as per four conventions for years Saka 1911 to 1916 (AD 1989 to 1995) 
 

Year 
Transit date and time of 

the Sun to the Mesha rasi 
Length of the 
nirayana year 

Starting day of the solar month corresponding 
to the Mesha rasi 

Time 
Saka 

Gregorian 
(AD) Date # 

h m 
d h m Bengal Orissa Tamil Malayali 

1911 1989-90 
13 April 

1989 21 45 365 6 12 
14 April 

1989 
13 April 

1989 
14 April 

1989 
14 April 

1989 

1912 1990-91 
14 April 

1990 3 57 365 6 7 
15 April 

1990 
13 April 

1990 
14 April 

1990 
14 April 

1990 

1913 1991-92 
14 April 

1991 10 4 365 6 3 
15 April 

1991 
14 April 

1991 
14 April 

1991 
14 April 

1991 
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1914 1992-93 
13 April 

1992 16 7 365 6 18 
14 April 

1992 
13 April 

1992 
13 April 

1992 
14 April 

1992 

1915 1993-94 
13 April 

1993 22 25 365 6 6 
14 April 

1993 
13 April 

1993 
14 April 

1993 
14 April 

1993 

1916 1994-95 
14 April 

1994 4 31 365 6 0 
15 April 

1994 
13 April 

1994 
14 April 

1994 
14 April 

1994 

 
#: The IST for sunrise, aparahna and sunset ranges from 5h40m54.1902s to 5h41m48.0244s, 13h16m32.6652s to 
13h16m40.2379s and 18h19m55.047s to 18h20m18.3152s respectively for the Gregorian dates of the day of Mesha 
samkranti. These times are obtained from the codes that I have written. They can be found in the Mathematica package 
IndianCalendar.m.  
 
Notes: 

1. The IST for sunrise, sunset and aparahna are taken at Ujjain (Latitude: 23011’E, Longitude: 82030’N (IST)) in 
India. 

  
2. The time of Mesha samkranti is measured in IST. 

 
3. Kollam year of the Malayali (Kerala) calendar starts on the Sun entering Simha rasi. The year of the 

remaining calendars starts on the Sun entering Mesha rasi. 
 

 

Occurrence of Leap Years 

The mean length of a nirayana year is about 365d6h9m12.96s (365.2564 days). Suppose 

we have a solar calendar to approximate the nirayana year and the basic calendrical unit 

used is the 24h day. Let each of its solar months has a fixed number of days. Then most 

calendar years will normally have 365 days. To synchronize with the mean length of the 

nirayana year, a leap day has to be added to the normal length of the calendar year at 

some intervals. Hence a leap year has 366 days. 

Since every such normal year is short of the mean length of the nirayana year by 

6h9m12.96s (0.2564 days), it takes 1/(365.2564 - 365) = 3.9002 years to accumulate the 

shortfall to a day. Hence approximately ten days must be added in 39 years to bring the 

solar calendar back with the nirayana year. This means that there must be ten leap years 

in every 39 years. 

Referring back to the Indian solar calendar with the civil day as its basic unit, it 

has no fixed number of days for its months. The length of a civil year cannot be 

determined by arithmetical rule. Instead, it depends on the time of transit of the Sun to the 

first rasi that starts the year and the conventions used to fix the starting day of solar 

months. However by astronomical observation, it is found that there are normally 365 

days in a civil year and 366 days in a leap year. Furthermore, leap years automatically 
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occur at an interval of three or four years so that ten leap years occur in a period of 39 

years for the solar calendar to keep in pace with the nirayana year.  

If we refer to the leap year rule for the Gregorian calendar, we will generally have 

about 39/4 = 9.75 leap years in every 39 years. This value is smaller because the 

Gregorian calendar approximates the tropical year, not the nirayana year. Hence the 

occurrence of leap years for the Gregorian calendar is close to what is actually happening 

for the Indian solar calendar. See Table 5 for occurrence of leap years. 

 

Table 5: Occurrence of leap years 
 

Orissa Rule  Tamil Rule Bengal Rule Malayali Rule 
Saka 
Year Starting 

date 
Year 
length 

Starting 
date 

Year 
length 

Bengali 
San 

Starting 
date 

Year 
length 

Kollam 
year 

Saka 
year Starting 

date 
Year 
length 

1900 
13 Apr 

78 
366 
(L) 

14 Apr 
78 365 1385 

15 Apr 
78 365 1154 

1900-
01 

17 Aug 
78 365 

1901 
14 Apr 

79 365 14 Apr 
79 365 1386 

15 Apr 
79 365 1155 

1901-
02 

17 Aug 
79 365 

1902 
13 Apr 

80 365 13 Apr 
80 

366 
(L) 1387 

14 Apr 
80 365 1156 

1902-
03 

16 Aug 
80 

366 
(L) 

1903 
13 Apr 

81 365 14 Apr 
81 365 1388 

14 Apr 
81 

366 
(L) 1157 

1903-
04 

17 Aug 
81 365 

1904 
13 Apr 

82 
366 
(L) 

14 Apr 
82 365 1389 

15 Apr 
82 365 1158 

1904-
05 

17 Aug 
82 365 

1905 
14 Apr 

83 365 14 Apr 
83 365 1390 

15 Apr 
83 365 1159 

1905-
06 

17 Aug 
83 

366 
(L) 

1906 
13 Apr 

84 365 13 Apr 
84 

366 
(L) 1391 

14 Apr 
84 365 1160 

1906-
07 

17 Aug 
84 365 

1907 
13 Apr 

85 365 14 Apr 
85 365 1392 

14 Apr 
85 

366 
(L) 1161 

1907-
08 

17 Aug 
85 365 

1908 
13 Apr 

86 
366 
(L) 

14 Apr 
86 365 1393 

15 Apr 
86 365 1162 

1908-
09 

17 Aug 
86 365 

1909 
14 Apr 

87 365 14 Apr 
87 365 1394 

15 Apr 
87 365 1163 

1909-
10 

17 Aug 
87 

366 
(L) 

1910 
13 Apr 

88 365 13 Apr 
88 

366 
(L) 1395 

14 Apr 
88 365 1164 

1910-
11 

17 Aug 
88 365 

1911 
13 Apr 

89 365 14 Apr 
89 365 1396 

14 Apr 
89 

366 
(L) 1165 

1911-
12 

17 Aug 
89 365 

1912 
13 Apr 

90 
366 
(L) 

14 Apr 
90 365 1397 

15 Apr 
90 365 1166 

1912-
13 

17 Aug 
90 365 

1913 
14 Apr 

91 365 14 Apr 
91 365 1398 

15 Apr 
91 365 1167 

1913-
14 

17 Aug 
91 

366 
(L) 
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1914 
13 Apr 

92 365 13 Apr 
92 

366 
(L) 1399 

14 Apr 
92 365 1168 

1914-
15 

17 Aug 
92 365 

1915 
13 Apr 

93 365 14 Apr 
93 365 1400 

14 Apr 
93 

365 
(L) 1169 

1915-
16 

17 Aug 
93 365 

1916 
13 Apr 

94 
366 
(L) 

14 Apr 
94 365 1401 

15 Apr 
94 365 1170 

1916-
17 

17 Aug 
94 365 

 
Notes: 

1. (L) Occurrence of years of 366 days (leap years) in the solar calendars. Generally, there are 10 leap years in a 
period of 39 years. 

 
2. Years of the Bengal, Orissa and Tamil calendars start from the Mesha rasi while that of the Malayali (Kerala) 

calendar starts from Simha rasi. 
 

 

Regions in India where calendars are used 

From Map 1, we have seen the regions in India using the solar calendars. On Map 2 

below, we highlight the states in these regions where the Orissa, Tamil, Malayali and the 

Bengal calendars are used.  

The Orissa calendar is mainly used in Orissa and partially in Punjab and Haryana. 

In Tamil Nadu and other Tamil speaking areas, people generally follow the Tamil 

calendar. The Malayali calendar is used in Kerala and the Bengal calendar is used in 

West Bengal, Assam and Tripura. The solar calendars in these states are used mainly for 

civil dating. See Map 2. 

 
It will be observed that when the Indian solar calendars are used in different regions of 

India, several problems arise. 

 

1. The starting day of the solar month may differ by one or two days in different 

parts of India. 

 

2. The number of days of different solar months also varies from 29 to 32.  

 

3. The length of the solar month by integral number of days is not fixed but changes 

from year to year. 
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Map 2: Areas in India using the different solar calendars 
 

 
 
 
 

The Council of Scientific and Industrial Research for the Government of India appointed 

a Calendar Reform Committee in November 1952. The committee’s objective is to 

examine all existing calendars in used in India and proposed an accurate and uniform all-

India calendar for both civil and religious use. After close examination, the Committee 

recommended a unified solar calendar for civil use. The Government of India accepted 

the proposal and introduced it as the Indian national calendar with effect from 22 March 

1957.  
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3.3: The National Calendar 

The national calendar is a modification of the existing Indian solar calendars. The 

principle unit of the calendar is still the civil day. The solar era chosen is the Saka 

national era. See Table 3 for its epoch with reference to the Gregorian calendar.  

The following shows the features that are different from the existing Indian solar 

calendars. 

 

1. The national calendar is made to approximate the sayana year, not the nirayana 

year. The sayana year is a tropical year. As a result, the calendar year starts on the 

day after the March Equinox day. 

 

2. The solar months have fixed number of days restricted to either 30 or 31 days. 

This would still depend on the time taken for the Sun to travel the concerned 

tropical rasi, where the starting point of the sayana year and hence, the first rasi, is 

the March Equinox. Referring to Table 6, the five months from the second to the 

sixth have mean lengths over 30.5 days and so their lengths are rounded up to 31 

days. The remaining months have 30 days. Names for the solar months are kept 

the same as those of the Indian solar calendar listed in Table 2 colunm 3. 

However, the first month is named as Chaitra, followed by Vaisakha and so on. 

See Table 6. 

 

Table 6: Lengths of different solar months reckoned from the March Equinox 
 

Mean lengths of solar months 
 

Modern value 
(AD1950) 

Name of months for the 
general solar calendar as 

in Table 2 column 3 

Arc measured from the 
March Equinox point 
covered by the true 
longitude of the Sun 

d h m 

Names of Months 
(as proposed) 

Vaisakha 00 - 300 30 11 25.2 Chaitra 

Jyaistha 300 - 600 30 23 29.6 Vaisakha 

Ashadha 600 - 900 31 8 10.1 Jyaistha 

Sravana 900 - 1200 31 10 54.6 Ashadha 

Bhadra 1200 - 1500 31 6 53.1 Sravana 
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Asvina 1500 - 1800 30 21 18.7 Bhadra 

Kartika 1800 - 2100 30 8 58.2 Asvina 

Agrahayana 2100 - 2400 29 21 14.6 Kartika 

Pausha 2400 - 2700 29 13 8.7 Agrahayana 

Magha 2700 - 3000 29 10 38.6 Pausha 

Phalguna 3000 - 3300 29 14 18.5 Magha 

Chaitra 3300 - 3600 29 23 18.9 Phalguna 

 

3. The occurrence of leap years for this calendar is made to fall in the same leap year 

of the Gregorian calendar to keep the relation of the dates between these two 

calendars the same. When leap year occurs, Chaitra would have 31 days instead 

of 30 days. See Table 7. 

 

Table 7: Names of the months of the national calendar, their lengths and the dates of the Gregorian calendar 
corresponding to the first day of its month 
 

 
Names of months 
and their lengths 

Gregorian date for 
the 1st day of the 
month 

 
Names of months and 
their lengths 

Gregorian date for 
the 1st day of the 
month 

1 Chaitra       (30) 
Chaitra (L) (31) 

22 March 
21 March 

7 Asvina          (30) 23 September 

2 Vaisakha    (31) 21 April 8 Kartika          (30) 23 October 

3 Jyaishtha    (31) 22 May 9 Agrahayana   (30) 22 November 

4 Ashadha    (31) 22 June 10 Pausha           (30) 22 December 

5 Sravana      (31) 23 July 11 Magha           (30) 21 January 

6 Bhadra       (31) 23 August 12 Phalguna       (30) 20 Feburary 

 

However, most calendar-makers do not accept the National calendar mainly 

because the sayana system was adopted instead of the nirayana system. To them, this 

change was too drastic because the Surya Siddhanta had suggested that the solar 

calendars should be made to keep in line with the nirayana year and the calendar-makers 

would not want to abandon this principle. In the end, the existing solar calendars continue 
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to be used actively in India up to today. By introducing this national calendar, it would 

only cause more confusion in determining the actual date of a particular day.  
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3.4: The Lunisolar Calendars 

As we know, the basic unit of a lunisolar calendar is the lunar month. There are two kinds 

of lunar months being used in India. They are the new moon ending lunar month and the 

full moon ending lunar month, resulting in the amanta and the purimanta lunisolar 

calendars. 

  

3.4(a) The Amanta Lunisolar Calendar 

The amanta lunisolar calendar is based on the new moon ending lunar month, also known 

as the amanta month. The calendar is constructed to keep in phase with the nirayana year 

by adding leap months. 

 

The Amanta Month 

The amanta month refers to a lunar month that runs from new moon to the next new 

moon. Each amanta month and hence the lunar year are expressed in integral number of 

civil days. The numbering of days in the amanta month will be explained later when we 

come to define a tithi. 

In general, the amanta month is named after the solar month in which the moment 

of its defining initial new moon falls. This procedure may change when the amanta 

month is too close to a kshaya month. We will explain what a kshaya month is and how it 

can affect the naming later.  

In order to assign names to amanta months, a solar month is taken to start from 

the exact moment of the concerned samkranti to the next samkranti. Hence an amanta 

month can start from any day of the concerned solar month. 

The amanta month is divided into two half-months, the sudi and vadi halves. The 

sudi half is also known as the sukla paksha or the bright half-month, covering the time 

period from new moon to the next full moon (the waxing phases). The vadi half, also 

known as the krishna paksha or the dark half-month, covers the period from full moon to 

the next new moon (the waning phases). 
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The Calendar Year and the Lunisolar Eras 

For the amanta lunisolar calendar, the lunar year starts at the amanta month of Chaitra. 

We call this lunisolar calendar the Chaitra calendar for convenience. In some states of 

India, calendar-makers prefer the lunar year to begin with the amanta months of Kartika 

or Ashadha. We call these variations the Kartika and Ashadha calendars respectively. 

In our discussion, we will focus on the Chaitra calendar. The calendrical 

principles behind the Chaitra calendar are the same for the Kartika and Ashadha 

calendars. See Table 8 for the names of the amanta months. 

 

Table 8: The 12 months of the Chaitra (or Kartika/Ashadha) calendar year that are named after solar 
months 

 
1.    Chaitra 2.     Vaisakha 3.     Jyaishtha 
4.    Ashadha 5.     Sravana 6.     Bhadra 
7.    Asvina 8.     Kartika 9.     Agrahayana or Margasirsha 
10.  Pausha 11.   Magha 12.   Phalguna 

 
 

The lunisolar eras that are used in the Indian lunisolar calendars are the 

Salivahana Saka, Vikram Samvat (Chaitradi), Vikram Samvat (Kartikadi) and Vikram 

Samvat (Ashadadi) eras. See Table 9 for their epochs with reference to the Gregorian 

calendar and the lunisolar calendars in which the eras are used. 

 
Table 9: Different lunisolar eras in use and their epochs with reference to the Gregorian calendar 

 

Lunisolar Era 
Epoch of the era with 

reference to the 
Gregorian Calendar 

Calendars using the era 

Salivahana Saka 

AD year –78 from Mar/Apr 
to Dec 
AD year –79 from Jan to 
Mar/Apr 

General era used in the Chaitra calendar 

Vikram Samvat 
(Chaitradi) 

AD year +57 from Mar/Apr 
to Dec 
AD year +56 from Jan to 
Mar/Apr 

Used in the Chaitra calendar 

Vikram Samvat 
(Kartikadi) 

AD year +57 from Oct/Nov 
to Dec 
AD year +56 from Jan to 
Oct/Nov 

Era used in the Kartika calendar 
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Vikram Samvat 
(Ashadadi) 

AD year +57 from June/July 
to Dec 
AD year +56 from Jan to 
June/July 

Era used in the Ashadha calendar 

 

 

Occurrence of Leap or Adhika Month 

The lunar calendar year, which consists of 12 amanta months, is shorter than the nirayana 

year and hence leap months are occasionally added at intervals so that the amanta 

lunisolar calendar is kept adjusted to approximate the nirayana year. The occurrence of 

leap months in the Chaitra calendar does not follow the Metonic cycle and cannot be 

determined by any arithmetical rules. Leap month occurs when the following 

astronomical event happens. 

When a solar month completely covers an amanta month, that is, when there are 

two new moons, one falling at the beginning and the other at the end of the solar month, 

the amanta month that begins from the first new moon is treated as a leap month and 

prefixed with the title ‘adhika’ or ‘mala’. We call the leap month adhika or mala month. 

The amanta month that runs from the second new moon is considered a regular or normal 

month and prefixed with the title ‘suddha’. Both amanta months bear the name of the 

same solar month. A lunar year with an adhika month has 13 amanta months.  

An adhika month occurs generally at intervals 2 years 4 months, 2 years 9 

months, 2 years 10 months or 2 years 11 months, giving an average interval of about 2 

years 8.4 months. The average value can also be obtained by just taking the mean length 

of a lunar month, which is about 29.5 days, to divide by 11. Since a lunar year is short of 

the nirayana year by about 11 days, it takes about 29.5/11 = 2 years 8.2 months for the 

shortfall to accumulate to the average length of a lunar month. Thus an adhika month is 

added around this time to help the lunisolar calendar keep up with the nirayana year. 

We see that the intervals of occurrence of adhika months are quite close. This is 

because most lunations are shorter than a solar month. See Table 10. See also Table 11 

for occurrence of adhika months.  

 

Table 10: Length of lunation versus length of a solar month 
 

 Length of solar month  Length of lunation 

 d h m s  d h m S 
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 29 10 48 0  29 5 54 14.4 
 to  to 
 31 10 48 0  29 19 36 28.8 

Mean Value: 30 10 29 4  29 12 44 3.84 

 
Note: From the mean values, it can be seen that most lunations are shorter than a solar month. 
 

 

Occurrence of Kshaya Month 

Very rarely, an amanta month can completely cover a solar month, that is, there is no new 

moon falling in that solar month and hence no amanta month naming after it. This 

‘missing’ amanta month is called the kshaya or decayed month. By astronomical 

observation, we find that kshaya month may happen at 19 years or 141 years and also at 

immediate intervals of 4, 65, 76 and 122 years. See Table 12 for occurrence of kshaya 

months. 

A kshaya month can occur because the maximum duration of a lunation is longer 

than the short solar months Agrahayana, Pausha and Magha since these solar months 

correspond to the short rasis Vrischika, Dhanus and Makara. Hence a kshaya month is 

possible only in these three solar months.  

When a kshaya month happens in a lunar year, there will always occur two adhika 

months, one before and the other after, the kshaya month. Let me explain how this can 

happen. Under normal circumstances, we should have only a new moon falling in a solar 

month. However, things start to get complicated when new moons and samkrantis fall too 

close to one another.  

When new moons come too close to samkrantis and there are no new moons 

falling in a particular solar month say A, there will be an extra new moon occurring close 

before A. This is because the new moon that is supposed to fall in A occurs close to but 

before A’s concerned samkranti. Then there will be a solar month before A that 

‘captures’ a new moon nearby, resulting in two new moons to occur within it. Hence the 

first adhika month occurs. Since the new moon that falls after A is very close to the new 

samkranti and knowing that most of the solar months that come after A are longer, then 

there will be two new moons falling within one of the solar months, giving the second 

adhika month. 
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There are also different conventions to handle the adhika months so that the 

kshaya month can be compensated and the 12 months structure of the lunar year is 

restored. This will be discussed later. 

 

Table 11: Year and time intervals of occurrence of adhika months in the period Saka 1888 to 1923 
(Gregorian 1966 to 2001) 
 

Year Interval of occurrence of adhika months 

Gregorian Saka 

Name of adhika month 

Year Month 
1966 1888 Sravana 2 9 
1969 1891 Ashadha 2 11 
1972 1894 Vaisakha 2 10 
1974 1896 Bhadra 2 4 
1977 1899     Sravana @ 2 11 
1980 1902 Jyaishtha 2 10 

(1982) (Asvina) 2 4 
(1983) 

1904 # 
(Phalguna) 2 9 

     
1985 1907 Sravana 2 10 
1988 1910 Jyaishtha 2 10 
1991 1913 Vaisakha 2 11 
1993 1915 Bhadra 2 4 
1996 1918 Ashadha 2 10 
1999 1921 Jyaishtha 2 11 
2001 1923 Asvina 2 4 

 
@ According to old Surya Siddhantic method of calculation, Ashadha is the adhika month. 
 
# In Saka 1904 (AD 1982-1983), Magha is a kshaya month. The interval of occurrences of the two adhika months 
(Asvina and Phalguna) accompanying Magha is counted from the adhika month (Jyaishtha) in Saka 1902 (AD 1980). 
 
Note: Notice that seven adhika months have occurred in cycles of 19 years as required. 
 
 
Table 12: Occurrence of kshaya months with the two accompanying adhika months in the period from Saka 
692 (AD 770-771) to Saka 1904 (AD 1982-1983) 
 

Year 

Saka AD 

Year 
 Interval 

Kshaya 
Month 

Adhika months before and after Kshaya month 

692 770-771 - Pausha Asvina – Chaitra 

814 892-893 122 Agrahayana Kartika – Chaitra 

833 911-912 19 Pausha Asvina – Chaitra 

974 1052-1053 141 Pausha Asvina – Chaitra 

1115 1193-1194 141 Pausha Asvina – Chaitra 

1180 1258-1259 65 Pausha Kartika – Chaitra 
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1199 1277-1278 19 Pausha Kartika – Phalguna 

1218 1296-1297 19 Pausha Agrahayana – Phalguna 

1237 1315-1316 19 Agrahayana Kartika – Phalguna 

1256 1334-1335 19 Pausha Asvina – Phalguna 

1302 1380-1381 46 Agrahayana Kartika – Vaisakha 

1321 1399-1400 19 Pausha Kartika – Chaitra 

1397 1475-1476 76 Magha Asvina – Phalguna 

1443 1521-1522 46 Agrahayana Kartika – Vaisakha 

1462 1540-1541 19 Pausha Asvina – Chaitra 

1603 1681-1682 141 Pausha Asvina – Chaitra 

1744 1822-1823 141 Pausha Asvina – Chaitra 

1885 1963-1964 141 Agrahayana Kartika – Chaitra @ 

1904 1982-1983 19 Magha Asvina – Phalguna 

 
@: According to old Surya Siddhantic method of calculation, Pausha is kshaya month and the two adhika months are 
Asvina and Chaitra. 
 

 

Tithi 

A tithi is defined to be the time required for the longitude of the Moon to increase by 120 

over the longitude of the Sun. Sometimes we call it is a lunar day. A lunar month can be 

divided into 30 tithis, of which 15 are sukla paksha (bright half) counted serially from 1 

to 15 with prefix ‘S’ and 15 are krishna paksha (dark half) counted serially from 1 to 14, 

and the last one 30, with prefix ‘K’ or ‘V’. 

 

Table 13: Names of the 15 tithis with their prefixes and serial numbers 
 

Prefix (es) Serial number Name  Prefix (es) Serial number Name 

S K 1 Pratipada  S K 8 Ashtami 

S K 2 Dvitiya  S K 9 Navami 

S K 3 Tritiya  S K 10 Dasami 

S K 4 Chaturthi  S K 11 Ekadasi 
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S K 5 Panchami  S K 12 Dvadasi 

S K 6 Sashthi  S K 13 Trayodasi 

S K 7 Saptami  S K 14 Chaturdasi 

     S 15 Purnima 

     K 30 Amavasya 

 

 

When the Moon and the Sun are in conjunction (at new moon), the (K) 30th tithi 

ends and the (S) 1st tithi begins and continues up to the moment when the Moon gains on 

the Sun by 120 in longitude. Then the (S) 1st tithi ends and the (S) 2nd tithi starts. This 

process continues and repeats itself at every new moon. 

There are 29 or 30 days in an amanta month. Each day is assigned the number of 

the tithi in effect at sunrise. However, the days are not always counted serially from 1 to 

29 or 30. To understand why, we need to look at duration of a tithi. The average duration 

of a tithi is 23h37m30s (23.625 hours) but the actual value varies from 19h28m48s (19.48 

hours) to 26h46m48s (26.78 hours).  

A short tithi may begin after sunrise and end before the next sunrise. In this case, 

a number is omitted from the day count. For example, when the third tithi begins after 

sunrise and ends before the next sunrise, the tithi in effect at the next sunrise is the fourth 

tithi. The sequence of days of the amanta month is 1, 2, 4, 5 and so on. In this case, we 

have a skipped or kshaya day. See Figure 11. 

 

Figure 11: A short tithi that begins after sunrise and ends before the next sunrise, causing a kshaya day 
 

 
  

Similarly, a long tithi may span two sunrises, that is, there is no tithi ending in 

that day. Then a day number is carried over to the second day and is treated as a leap day, 

suffixed by the term ‘adhika’. For example, the third tithi extends over two days with no 

tithi ending in the first day. The same tithi number is given to the two days. The sequence 

of days of the amanta month would be 1, 2, 3, 3 adhika, 4 and so on. Here, we say that a 

leap or adhika day has occurred. See Figure 12. 
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Figure 12: A long tithi spanning two sunrises, causing an adhika day 
 

 
 
 

Notice that kshaya days occur more frequently than adhika days because most 

tithis are shorter than a civil day. A civil day is of length very close to 24h. This can be 

observed by looking at the average length of a tithi. If we compare this with adhika and 

kshaya months, adhika months happen much more often than kshaya months. 

 

Different conventions in treating the kshaya month 

When a kshaya month occurs, there is always a ‘lost’ amanta month and two adhika 

months, the first adhika month before and the second one after the kshaya month. In 

order to replace the ‘lost’ month and recover the 12 months structure of a lunar year, 

calendar-makers in different regions set rules to make the compensation. In general, there 

are three different schools of rules for treating the kshaya month.  

 

1. The Eastern School 

The rule to follow is to treat the first adhika month as the leap month and the 

second adhika month as a normal or suddha month. 

 

2. The North Western School 

The procedure is opposite to how rules from the Eastern school handle the adhika 

months. The first adhika month is treated as a normal or suddha month. The 

second adhika month is the leap month.  

 

3. The Southern School 

Under this school, both the adhika months are treated as the leap months. The 

amanta month that contains two samkramanas (rasi junctions) that defines a solar 

month is treated as a ‘jugma’ or dual (double) month, meaning that each tithi of 
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this amanta month is divided into two halves. The first half is a tithi of the 

concerned amanta month and the second half is the same tithi of the kshaya month. 

In this way, the amanta month consists of two different months sharing the same 

tithi and a dual month is obtained. Notice that the amanta month before the dual 

month gets the same name as if rules of the Eastern school are used and the amanta 

month after the dual month are named as if procedures from North Western school 

are used. 

 

The following is an illustration on how rules from the three schools are applied to the 

lunar year of Saka 1462 (AD 1540-1541) that contains a kshaya month Pausha.  

 

Figure 13: Occurrence of two adhika months of Asvina and Chaitra and the kshaya month of Pausha in the 
lunar year of Saka 1462 (AD 1540-1541) 

 
 

Notes: 
1. N5, N6, N7, etc are positions of new moons in the solar months of Asvina, Kartika, etc. 
 
2. Amanta months N6-N7 and N12-N13 fall within the solar months of Asvina (Kanya rasi) and Chaitra (Mina 

rasi). They are adhika Asvina and Chaitra. 
 

3. Amanta month N9-N10 completely overlaps the solar month of Pausha (Dhanus rasi) and hence causes a 
kshaya month of Pausha.   

 
 
Table 14: Treatment of kshaya and adhika months in the three different schools, taking the example of the 
kshaya-month year of Saka 1462, Vikram 1597 or AD 1540-1541, where the kshaya month was Pausha 
 

Name of amanta month in different schools Amanta month as 
per notation in 

Figure 13 

Gregorian 
Calendar dates # 

from new moon to 
new moon 

Rasi in which initial 
moment of new moon of 

amanta month falls Eastern 
North 

Western 
Southern 

N5-N6 

 
12 Aug 

to 
11 Sep 

1540 
 

Simha 
 

Bhadra 
 

Bhadra 
 

Bhadra 

N6-N7 
11 Sep 

to 
10 Oct 

Kanya 
(Adhika) 
 Asvina 

 
Asvina 

(Adhika)  
Asvina 

N7-N8 
10 Oct 

to 
9 Nov 

Kanya 
 

Asvina 
 

Kartika 
 

Asvina 
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N8-N9 
9 Nov 

to 
8 Dec 

Tula Kartika Agrahayana Kartika 

N9-N10 

 
8 Dec 

to 
7 Jan 

1541 
 

Vrischika 
 
Agrahayana  

 
Pausha 

 
Agrahayana & 

Pausha 

N10-N11 
7 Jan 

to 
6 Feb 

Makara Pausha Magha Magha 

N11-N12 
6 Feb 

to 
8 Mar 

Kumbha Magha Phalguna Phalguna 

N12-N13 
8 Mar 

to 
6 Apr 

Mina Phalguna 
(Adhika) 
Chaitra 

(Adhika) 
Chaitra 

N13-N1 
6 Apr 

to 
6 May 

Mina Chaitra Chaitra Chaitra 

 
# The dates from column 2 are obtained by functions that we have written and they can be found in the 
Mathematica package IndianCalendar.m. 
 
 

Observe that from Table 14, it is not always true that a suddha Chaitra amanta month 

starts the lunar year. It was the adhika Chaitra amanta month that started the (Saka 1462) 

lunar year if rules from the North Western or the Southern School were used.  

From Table 12, we see that for Saka 1443 (AD 1521-1522), the adhika month after the 

kshaya month is Vaisakha. Under the Eastern school, the amanta month of Chaitra 

actually falls in the Mesha rasi rather than the Mina rasi. See Figure 14. 

 

Figure 14: Occurrence of two adhika months of Kartika and Vaisakha and the kshaya month of Agrahayana 
in the lunar year of Saka 1443 (AD 1521-1522) 
 

 
Notes: 

1. N7, N8, N9 etc are positions of new moons in the solar months of adhika Kartika, suddha Kartika, etc. 
 
2. Amanta months N7-N8 and N1-N2 fall within the solar months of Kartika (Tula rasi) and Vaisakha (Mesha 

rasi). They are adhika Kartika and Vaisakha. 
 

3. Amanta month N8-N9 completely overlaps the solar month of Agrahayana with the linked rasi Vrischika and 
hence causes a kshaya month of Agrahayana. 
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4. Under rules from the Eastern school, N7-N8 is adhika Kartika, N8-N9 is suddha Kartika, ……, N11-N12 is 
Phalguna and N1-N12 is suddha Chaitra.   

  

Hence we can conclude that the essential requirement of the Chaitra & other amanta 

lunisolar calendars is that the 12 months structure of a lunar year must be preserved. 

 

Regions in India where calendars are used   

From Table 14, we see that there are actually three variations of the Chaitra calendar and 

hence, the Kartika and Ashadha calendars, due to the different school rules for treating 

kshaya month. However, we do not have information on the regions in India that follow 

these rules. As we have already know the region in India where the amanta lunisolar 

calendar is used, on Map 3 below, we only indicate the states using the different lunisolar 

calendars. 

The Chaitra calendar is mainly followed in the states of Karnataka, Andhra 

Pradesh and Maharashtra. The Kartika calendar is used in Gujarat. However, people in 

Kutch, a place in Gujarat, follow the Ashadha calendar. In these regions, the lunisolar 

calendars are used mainly for both civil and religious purposes. In the states where solar 

calendars are used, except in Orissa, Punjab and Haryana, the Chaitra calendar is needed 

to determine dates of religious and festive events. See Map 3. 
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Map 3: Areas in India using the different amanta lunisolar calendars 
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3.4(b) The Purimanta Lunisolar Calendar 

The purimanta lunisolar calendar uses the full moon ending lunar month as its 

fundamental unit. This calendar is also made to synchronize with the nirayana year in the 

same way as the amanta lunisolar calendar. 

 

The Purimanta Month 

The purimanta month is a lunar month that covers the period from full moon to the next 

full moon. The purimanta month is named after the amanta month in which the moment 

of its defining subsequent full moon falls. In other words, the purimanta month starts 

about 15 days earlier and ends in the middle of the concerned amanta month. The 

purimanta month and consequently the lunar year are expressed in civil days. See Table 8 

for the names of 12 purimanta months. 

The purimanta month is also divided into two halves. The first is the vadi (krishna 

paksha) half and the second is the sudi (sukla paksha) half. The definitions are the same 

as the ones in the amanta month. See Figure 15 for the relationship between the amanta 

and purimanta months. 

 

Figure 15: Relationship between the amanta and purimanta months 

 
 

There is a charateristic about the purimanta month. Although an amanta month 

may fall almost entirely outside its linked solar month, the purimanta month always 

covers at least half of that solar month. Let us look at two examples to explain this. For 

the first example, suppose the defining new moon of amanta month Chaitra (N1) falls 

within the first half of solar month Chaitra, we see that the sudi half of purimanta month 

Chaitra falls completely within solar month Chaitra. See Figure 16. 
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Figure 16: First example to show how at least half of the purimanta month falls within its concerned solar 

month 

 

 

In the second example, if the defining new moon of the amanta month Chaitra (N1) falls 

within the second half of solar month Chaitra, we see that the vadi half of purimanta 

month Chaitra falls completely within solar month Chaitra. See Figure 17. 

 

Figure 17: Second example to show how at least half of the purimanta month falls within its concerned 

solar month 

 

 

 

The Calendar Year 

Like the Chaitra calendar, the purimanta lunisolar calendar begins the lunar year with the 

amanta month of Chaitra, that is, year starts in the middle of the purimanta month of 

Chaitra. Notice that the vadi half of the purimanta month of Chaitra falls in the old year 

while its sudi half falls in the new year. 

 

Occurrence and Treatment of Leap or Adhika Month and Kshaya Month 

The intervals of occurrence of adhika and kshaya months are generally the same as in the 

Chaitra calendar. When an adhika amanta month occurs, there will be two purimanta 

months named after it. The vadi half of the first purimanta month and the sudi half of the 
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second purimanta month are treated as suddha half months while the sudi half and the 

vadi half of the first and second purimanta months respectively, are treated as a whole 

adhika month. In this way, the adhika month for both the amanta and purimanta lunisolar 

calendars are kept at the same month. This can be shown in Table 15.   

However, a small number of calendar-makers prefer to have the entire first 

purimanta month treated as an adhika month and the entire second one as a suddha 

month. We do not have information on the regions in India where calendar-makers adopt 

different practices to treat adhika purimanta month. 

As for the kshaya month, when it occurs, there will be a kshaya purimanta month 

and two accompanying adhika purimanta months. However, we are uncleared with the 

conventions used by calendar-makers to handle kshaya month in the purimanta lunisolar 

calendar to restore the 12 months structure of the lunar year. See Table 15 for the amanta 

and purimanta lunar half months in relation to the Gregorian calendar dates for Vikram 

Samvat year 2050 or Gregorian year 1993-1994. 

 

Table 15: Beginnings of amanta and purimanta months in relations to Gregorian calendar dates for Vikram 
Samvat year 2050 or Gregorian year 1993-1994 
 

Amanta 
Month 

Corresponding 
Purimanta month 

Beginning of the lunar month 
in Gregorian calendar date 

Phalguna K Chaitra K 
AD 1993 

9 Mar 

Chaitra S Chaitra S 
24 Mar @ 

(Vikram-Chaitradi 2050) 

Chaitra K Vaisakha K 7 Apr 

Vaisakha S Vaisakha S 23 Apr 

Vaisakha K Jyaishtha K 7 May 

Jyaishtha S Jyaishtha S 22 May 

Jyaishtha K Ashadha K 5 June 

Ashadha S Ashadha S 21 June 

Ashadha K Sravana K 4 July 
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Sravana S Sravana S 20 July 

Sravana K Bhadra K 3 Aug 

(Adhika)  
Bhadra S 

(Adhika) 
Bhadra S 18 Aug 

(Adhika)  
Bhadra K 

(Adhika) 
Bhadra K 2 Sept 

Bhadra S Bhadra S 17 Sept 

Bhadra K Asvina K 1 Oct 

Asvina S Asvina S 16 Oct 

Asvina K Kartika K 31 Oct 

Kartika S Kartika S 
14 Nov @@ 

(Vikram-Kartikadi 2050) 

Kartika K Agrahayana K 30 Nov 

Agrahayana S Agrahayana S 14 Dec 

Agrahayana K Pausha K 29 Dec 

Pausha S Pausha S 
AD 1994 

12 Jan 

Pausha K Magha K 28 Jan 

Magha S Magha S 11 Feb 

Magha K Phalguna K 26 Feb 

Phalguna S Phalguna S 13 Mar 

Phalguna K Chaitra K 28 Mar 

 
S = Sukla paksha (sudi) 
K = Krishna paksha (vadi) 
 
Note: 
Lunar year Vikram-Chaitradi 2050 begins from the amanta month of Chaitra for both the amanta and purimanta 
calendars (marked by @). In Gujarat where Kartika calendar is used, amanta lunar year (Vikram-Kartikadi 2050) starts 
from the amanta month of Kartika (marked by @@).  
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Tithi 

Like the amanta month, a purimanta month can be divided into 30 tithis or lunar days, of 

which the first 15 tithis belong to krishna paksha (dark half) and second 15 tithis belong 

to the sukla paksha (bright half). The names, prefixes and serial numbers of the tithis are 

the same as what are found in the amanta month. See Table 13. 

At full moon, the (S) 15th tithi ends and the (K) 1st tithi begins and continues up to 

the moment when the Moon gains on the Sun by 120 in longitude. Then the (K) 1st tithi 

ends and the (K) 2nd tithi starts. This process continues and repeats itself at every full 

moon. 

The purimanta month can have 29 or 30 days with occasional occurrence of 

kshaya days or adhika days due to short and long tithis respectively. Hence, days are not 

always counted serially from 1 to 29 or 30. See Table 16 for an illustration on how days 

in the amanta lunar months of Chaitra and Vaisakha corresponding to the purimanta 

months of Chaitra (S), Vaisakha (K) and (S) and Jyaistha (K) for Saka 1916 or Vikram-

Chaitradi 2051 are counted according to the tithi in effect at sunrise. 

 

Table 16: Counting of days in the amanta lunar months of Chaitra and Vaisakha (S) corresponding to the 
purimanta months of Chaitra (S), Vaisakha (K) and Vaisakha (S) for Saka 1916 or Vikram-Chaitradi 2051 
according to the tithi in effect at sunrise. 
 

Grego-
rian 
date 

Grego-
rian 
date 

Grego-
rian 
date  

Civil 
day 

Day Count in 
Chaitra (S) 

according to 
tithi AD 

1994 

 
Civil 
day 

Day Count in 
Chaitra (K) 
according to 

tithi AD 
1994 

 
Civil 
day 

Day Count 
in 

Vaisakha 
(S) 

according 
to tithi 

AD 
1994 

1 1 
Apr  
12 1 1 

Apr  
26 1 1 

May 
11 

2 2 13 2 2 27 2 2 12 

3 3 14 3 3 28 3 3 13 

4 4 15 4 4 29 4 4 14 

5 5 16 5 5 30 5 4  
adhika 

15 
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6 6 17 6 6 May 
1 

6 5 16 

7 7 18 7 7 2 7 6 17 

8 8 19 8 8 3 8 7 18 

9 9 20 9 9 4 9 à 
9 

19 

10 10 21 10 10 5 10 10 20 

11 11 22 11 11 6 11 11 21 

12 12 23 12 12 7 12 12 22 

13 13 24 13 13 8 13 13 23 

14 à 
15 

25 14 14 9 14 14 24 

15   15 30 10 15 15 25 

  
S = Sukla paksha (sudi) 
K = Krishna paksha (vadi) 
à indicates ‘missing’ tithi 
 

 

The Purimanta Lunisolar Eras 

Since the amanta and purimanta lunisolar calendars start the lunar year together, they use 

the same eras. See Table 9 for the lunisolar eras. 

 

Regions in India where calendar is used   

In map 4 below, we see that the purimanta lunisolar calendar is mainly used in the states 

of Uttar Pradesh, Bihar, Madhya Pradesh, Rajasthan, Himachal Pradesh and Jammu and 

Kashmir for both civil and religious purposes. In the states of Orissa, Punjab and Haryana 

where the Orissa calendar is followed, the purimanta lunisolar calendar is used to fix 

dates of religious and festive events. 
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Map 4: Areas in India using the purimanta lunisolar calendar 
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Appendix: Computer Codes 
(**  

The function HinduSolar[date_Integer] from the Mathematica package Calendrica.m follows the 

convention that solar month begins with the day after the occurrence of its concerned samkranti. We call 

this convention the DR rule.  The function uses old Siddhantic methods to compute 

HinduSolarLongitude[kyTime_] (true position of the Sun) and hence HinduSunrise[kyTime_] (local time 

for sunrise at Ujjain), HinduZodiac[kyTime_] (the solar month) and HinduCalendarYear[kyTime_] (Kali 

Yuga year). The function Samkranti[gYear_, m_], which returns RD moment, is also determined from old 

Siddhantic methods.  

**) 

(**  

We have written the functions orissaHinduSolar[date_Integer], tamilHinduSolar[date_Integer], 

malayaliHinduSolar[date_Integer] and bengalHinduSolar[date_Integer] that followed the Orissa rule, the 

Tamil rule, the Malayali rule and the Bengal rule respectively. They are modifications of the function 

HinduSolar[date_Integer]. We have also come up with functions ujjainSunrise[kyTime_], 

ujjainSunset[kyTime_] and ujjainAparahna[kyTime_]  to obtain the IST for sunrise, sunset and aparahna at 

Ujjain. They are used in our written HinduSolar functions when required. However the functions 

HinduZodiac[kyTime_], HinduCalendarYear[kyTime_] and Samkranti[gYear, m_] are still used. We need 

to implement a function using modern methods to find true position of the Sun and hence determine the 

correct solar month, the Kali Yuga year and IST for the samkranti.  

**) 

 

(**  

ujjainSunrise[kyTime_] 

Input: Hindu moment. Output: Hindu moment. 

We use the actual longitude for Ujjain, but use the IST meridian to compute the IST for sunrise at Ujjain, 

i.e., we're computing the IST for sunrise at Ujjain.  

**) 

ujjainSunrise[kyTime_] :=  

    Module[{d, latitude, longitude}, 

    d = Floor[kyTime] + Calendrica`Private`HinduEpoch[]; 

    latitude = 1389/60; 

    longitude = 165/2; 

    kyTime + Sunrise[d, latitude, longitude]] 

 

(**  

ujjain Sunset[kyTime_] 
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Input: Hindu moment. Output: Hindu moment. 

We're computing the IST for sunset at Ujjain using similar methods found in ujjainSunrise[kyTime_].  

**) 

ujjainSunset[kyTime_] := 

    Module[{d, latitude, longitude}, 

    d = Floor[kyTime] + Calendrica`Private`HinduEpoch[]; 

    latitude = 1389/60; 

    longitude = 165/2; 

    kyTime + Sunset[d, latitude, longitude]] 

 

(**  

ujjainAparahna[kyTime_] 

Input : Hindu moment. Output : Hindu moment. 

We're computing the IST for aparahna at Ujjain.  

**) 

ujjainAparahna[kyTime_] := 

    ujjainSunrise[kyTime] + 0.6*(ujjainSunset[kyTime] - ujjainSunrise[kyTime]) 

 

(** The IST for sunrise, sunset and aparahna at Ujjain required by Table3. **) 

Input:     TimeOfDay[N[ujjainSunrise[HinduDayCount[ToFixed[Gregorian[4, 13, 1989]]]]]] 

TimeOfDay[N[ujjainSunset[HinduDayCount[ToFixed[Gregorian[4, 13, 1989]]]]]] 

TimeOfDay[N[ujjainAparahna[HinduDayCount[ToFixed[Gregorian[4, 13, 1989]]]]]] 

 

Output:  TimeOfDay[5, 41, 48.0244] 

TimeOfDay[18, 19, 55.047] 

TimeOfDay[13, 16, 40.2379] 

 

Input: TimeOfDay[N[ujjainSunrise[HinduDayCount[ToFixed[Gregorian[4, 14, 1990]]]]]] 

TimeOfDay[N[ujjainSunset[HinduDayCount[ToFixed[Gregorian[4, 14, 1990]]]]]] 

TimeOfDay[N[ujjainAparahna[HinduDayCount[ToFixed[Gregorian[4, 14, 1990]]]]]] 

 

Output: TimeOfDay[5, 40, 54.1902] 

TimeOfDay[18, 20, 18.3152] 

TimeOfDay[13, 16, 32.6652] 

 

Input: TimeOfDay[N[ujjainSunrise[HinduDayCount[ToFixed[Gregorian[4, 14, 1991]]]]]] 

TimeOfDay[N[ujjainSunset[HinduDayCount[ToFixed[Gregorian[4, 14, 1991]]]]]] 
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TimeOfDay[N[ujjainAparahna[HinduDayCount[ToFixed[Gregorian[4, 14, 1991]]]]]] 

 

Output: TimeOfDay[5, 40, 54.1902] 

TimeOfDay[18, 20, 18.3152] 

TimeOfDay[13, 16, 32.6652] 

 

Input: TimeOfDay[N[ujjainSunrise[HinduDayCount[ToFixed[Gregorian[4, 13, 1992]]]]]] 

TimeOfDay[N[ujjainSunset[HinduDayCount[ToFixed[Gregorian[4, 13, 1992]]]]]] 

TimeOfDay[N[ujjainAparahna[HinduDayCount[ToFixed[Gregorian[4, 13, 1992]]]]]] 

 

Output: TimeOfDay[5, 40, 54.1902] 

TimeOfDay[18, 20, 18.3152] 

TimeOfDay[13, 16, 32.6652] 

 

Input: TimeOfDay[N[ujjainSunrise[HinduDayCount[ToFixed[Gregorian[4, 13, 1993]]]]]] 

TimeOfDay[N[ujjainSunset[HinduDayCount[ToFixed[Gregorian[4, 13, 1993]]]]]] 

TimeOfDay[N[ujjainAparahna[HinduDayCount[ToFixed[Gregorian[4, 13, 1993]]]]]] 

 

Output: TimeOfDay[5, 41, 48.0244] 

TimeOfDay[18, 19, 55.047] 

TimeOfDay[13, 16, 40.2379] 

 

Input: TimeOfDay[N[ujjainSunrise[HinduDayCount[ToFixed[Gregorian[4, 14, 1994]]]]]] 

TimeOfDay[N[ujjainSunset[HinduDayCount[ToFixed[Gregorian[4, 14, 1994]]]]]] 

TimeOfDay[N[ujjainAparahna[HinduDayCount[ToFixed[Gregorian[4, 14, 1994]]]]]] 

 

Output: TimeOfDay[5, 40, 54.1902] 

TimeOfDay[18, 20, 18.3152] 

TimeOfDay[13, 16, 32.6652] 

 

(**  

orissaHinduSolar[date_Integer] 

Input: Fixed number for RD date. Output: Orissa calendar date of day at sunrise on RD date.  

**) 

orissaHinduSolar[date_Integer] :=  

    Module[{kyTime, rise, month, year, approx, begin, day}, 
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    kyTime = HinduDayCount[date]; (** kyTime gives the number of days of RD date since the start of 

Kali Yuga or we say kyTime is in Hindu    moment. **) 

(** We find the rise, month, year, approx, begin and day at kyTime + 1 because the Orissa calendar date is 

ahead of the HinduSolar calendar date by a day. **) 

    rise = ujjainSunrise[kyTime + 1]; 

    month = Calendrica`Private`HinduZodiac[rise]; 

    year = Calendrica`Private`HinduCalendarYear[rise] - Calendrica`Private`HinduSolarEra[]; 

    (** year determines the Saka year in which kyTime + 1 falls. **) 

    approx = kyTime - 2 - Quotient[Mod[Calendrica`Private`HinduSolarLongitude[rise], 1800], 60]; 

    (** approx is a day in Hindu moment that falls in the previous solar month. **) 

    begin = approx + Calendrica`Private`MSum[(1) &,  

                 approx, (Calendrica`Private`HinduZodiac[ujjainSunrise[#]] =!= month) &]; 

    (** begin returns the starting day of month in Hindu moment. **) 

    day = kyTime - begin + 2; 

    (** day gives the day count from the starting day of month to kyTime + 1. **) 

    orissaHinduSolar[month, day, year]] 

 

(**  

tamilHinduSolar[date_Integer] 

Input: Fixed number for RD date. Output: Tamil calendar date of day at sunrise on RD date.  

**) 

tamilHinduSolar[date_Integer] := 

    Module[{kyTime, rise1, rise2, month1, month2, year1, year2, approx1,  

      begin1, day1, samk1, samk2, srise1, srise2, sset1, sset2}, 

    kyTime = HinduDayCount[date]; 

(** We find rise2 and month2 at kyTime + 1 because under certain criteria, the Tamil calendar date is 

ahead of the HinduSolar calendar date by a day. **) 

    rise1 = ujjainSunrise[kyTime]; 

    rise2 = ujjainSunrise[kyTime + 1]; 

    month1 = Calendrica`Private`HinduZodiac[rise1]; 

    month2 = Calendrica`Private`HinduZodiac[rise2]; 

    year1 = Calendrica`Private`HinduCalendarYear[rise1] - Calendrica`Private`HinduSolarEra[]; 

    approx1 = kyTime - 3 - Quotient[Mod[Calendrica`Private`HinduSolarLongitude[rise1], 1800], 60]; 

    begin1 = approx1 + Calendrica`Private`MSum[(1) &, 

                   approx1, (Calendrica`Private`HinduZodiac[ujjainSunrise[#]] =!= month1) &]; 

    day1 = kyTime - begin1 + 1; 

    samk1 = Samkranti[78 + year1, month1]; 
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    srise1 = ujjainSunrise[HinduDayCount[Floor[samk1]]] + Calendrica`Private`HinduEpoch[]; 

(** srise1 is the IST for sunrise for the day of samk1 if the IST for samk1 falls before midnight. Otherwise 

srise1 gives the IST for sunrise for the following day. If the latter is true, then samk1 falls after sunset for 

the same day. **) 

    sset1 = ujjainSunset[HinduDayCount[Floor[samk1]]] + Calendrica`Private`HinduEpoch[];  

    (** The explanation for sset1 is similar to that for srise1. **) 

    If[ month1 != month2, (** If month1 != month2, then month2 is the new month. We need the IST for 

the samkranti, the sunrise and sunset for the day of the samkranti and the Saka year for month2. **)                 

      year2 = Calendrica`Private`HinduCalendarYear[rise2] - Calendrica`Private`HinduSolarEra[]; 

      samk2 = Samkranti[78 + year2, month2]; 

      srise2 = ujjainSunrise[HinduDayCount[Floor[samk2]]] + Calendrica`Private`HinduEpoch[]; 

      sset2 = ujjainSunset[HinduDayCount[Floor[samk2]]] + Calendrica`Private`HinduEpoch[]]; 

    Which[(month1 == month2) && (srise1 <= samk1 < sset1), (** If samk1 falls between srise1 and 

sset1 on the same day, the Tamil rule and the Orissa rule will both agree. **) 

      tamilHinduSolar[month1, day1 + 1, year1],  month1 == month2, 

      (** If samk1 is either before sunrise or after sunset the Tamil rule and the DR rule will both agree. **) 

      tamilHinduSolar[month1, day1, year1], 

      (** The conditions below are for month1!= month2. **) 

      srise2 <= samk2 < sset2, tamilHinduSolar[month2, 1, year2], 

      srise1 <= samk1 < sset1, tamilHinduSolar[month1, day1 + 1, year1], 

      (** The Tamil rule and DR rules agree unless one or both of the samkrantis fall between sunrise and 

sunset. **) 

      True, tamilHinduSolar[month1, day1, year1]]] 

 

(**  

malayaliMonth[m_] 

Input: (solar)month number. Output: malayali month number.  

The Malayali calendar uses the Kollem era, not the Saka traditional era. Starting month of the nirayana year 

is month 5, the solar month that links with rasi 5. For example, if month = 5, then malayaliMonth = 1.  

**) 

malayaliMonth[m_] := Calendrica`Private`AdjustedMod[m - 4, 12] 

 

Input: malayaliMonth[5] 

 

Output: 1 

 

(**  
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malayaliYear[m_, n_] 

Input : (solar) month and Saka year. Output : Kollem year. The Malayali calendar uses the Kollem era, not 

the Saka traditional era. Starting month of the nirayana year is month 5, the solar month that links with rasi 

5. Hence malayaliYear number changes to a new year at month 5 and not month 1.  

**) 

malayaliYear[m_, n_] := If[1 <= m <= 4, n - 747, n - 746] 

 

Input: malayaliYear[1, 1912] 

 

Output: 1165 

 

(**  

malayaliHinduSolar[date_Integer] 

Input: Fixed number for RD date. Output: Malayali calendar date of day at sunrise on RD date.  

**) 

malayaliHinduSolar[date_Integer] := 

    Module[{kyTime, rise1, rise2, month1, month2, year1, year2, approx1,  

      begin1, day1, samk1, samk2, srise1, srise2, aparahna1, aparahna2}, 

    kyTime = HinduDayCount[date]; 

(** We find rise2 and month2 at kyTime + 1 because under certain criteria, the Malayali calendar date is 

ahead of the HinduSolar calendar date by a day. Then we make necessary changes to obtain the 

malayaliMonth and malayaliYear. **) 

    rise1 = ujjainSunrise[kyTime]; 

    rise2 = ujjainSunrise[kyTime + 1]; 

    month1 = Calendrica`Private`HinduZodiac[rise1]; 

    month2 = Calendrica`Private`HinduZodiac[rise2]; 

    year1 = Calendrica`Private`HinduCalendarYear[rise1] - Calendrica`Private`HinduSolarEra[]; 

    approx1 = kyTime - 3 - Quotient[Mod[Calendrica`Private`HinduSolarLongitude[rise1], 1800], 60]; 

    begin1 = approx1 + Calendrica`Private`MSum[(1) &,  

                   approx1, (Calendrica`Private`HinduZodiac[ujjainSunrise[#]] =!= month1) &]; 

    day1 = kyTime - begin1 + 1; 

    samk1 = Samkranti[78 + year1, month1]; 

    srise1 = ujjainSunrise[HinduDayCount[Floor[samk1]]] + Calendrica`Private`HinduEpoch[]; 

(** srise1 is the IST for sunrise for the day of samk1 if the IST for samk1 falls before midnight. Otherwise 

srise1 gives the IST for sunrise for the following day. If the latter is true, then samk1 falls after sunset for 

the same day. **) 

    aparahna1 = ujjainAparahna[HinduDayCount[Floor[samk1]]] +  
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                          Calendrica`Private`HinduEpoch[]; 

    (** The explanation for aparahna1 is similar to that for srise1. **) 

    If[month1 != month2, 

(** If month1!= month2, then month2 is the new month. We need the IST for the samkranti, the sunrise 

and the aparahna for the day of the samkranti and the Saka year for month2. **) 

      year2 = Calendrica`Private`HinduCalendarYear[rise2] - Calendrica`Private`HinduSolarEra[]; 

      samk2 = Samkranti[78 + year2, month2]; 

      srise2 = ujjainSunrise[HinduDayCount[Floor[samk2]]] +  

                   Calendrica`Private`HinduEpoch[]; 

      aparahna2 = ujjainAparahna[HinduDayCount[Floor[samk2]]] +  

                           Calendrica`Private`HinduEpoch[]]; 

    Which[(month1 == month2) && (srise1 <= samk1 < aparahna1), (** If samk1 falls between srise1 

and aparahna1 on the same day, the Malayali rule and the Orissa rule will both agree. **) 

      malayaliHinduSolar[malayaliMonth[month1], day1 + 1, malayaliYear[month1, year1]], 

      month1 == month2, (** If samk1 is either before sunrise or after aparahna, the Malayali rule and the 

DR rule will both agree. **) 

      malayaliHinduSolar[malayaliMonth[month1], day1, malayaliYear[month1, year1]], 

      (** The conditions below are for month1!= month2. **) 

      srise2 <= samk2 < aparahna2,  

      malayaliHinduSolar[malayaliMonth[month2], 1, malayaliYear[month2, year2]], 

      srise1 <= samk1 < aparahna1,  

      malayaliHinduSolar[malayaliMonth[month1], day1 + 1, malayaliYear[month1, year1]], (** The 

Malayali rule and DR rules agree unless one or both of the samkrantis fall between sunrise and aparahna. 

**) True,  

      malayaliHinduSolar[malayaliMonth[month1], day1, malayaliYear[month1, year1]]]] 

 

(**  

BengalHinduSolar[date_Integer] 

Input: Fixed number for RD date. Output: Bengal calendar date of day at sunrise on RD date.  

**) 

bengalHinduSolar[date_Integer] := 

    Module[{kyTime, rise1, rise2, month1, month2, year1, year2, approx1,  

      begin1, day1, samk1, samk2, srise1, srise2, midnight1, midnight2}, 

    kyTime = HinduDayCount[date]; 

(** We find rise1, month1, year1, approx1, begin1 and day1 at kyTime - 1 because under certain criteria, 

the Bengal calendar date is behind the HinduSolar calendar date by a day. **) 

    rise1 = ujjainSunrise[kyTime - 1]; 
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    rise2 = ujjainSunrise[kyTime]; 

    month1 = Calendrica`Private`HinduZodiac[rise1]; 

    month2 = Calendrica`Private`HinduZodiac[rise2]; 

    year1 = Calendrica`Private`HinduCalendarYear[rise1] - Calendrica`Private`HinduSolarEra[]; 

    approx1 = kyTime - 4 - Quotient[Mod[Calendrica`Private`HinduSolarLongitude[rise1], 1800], 60]; 

    begin1 = approx1 + Calendrica`Private`MSum[(1) &,  

                   approx1, (Calendrica`Private`HinduZodiac[ujjainSunrise[#]] =!= month1) &]; 

    day1 = kyTime - begin1; 

    samk1 = Samkranti[78 + year1, month1]; 

    srise1 = ujjainSunrise[HinduDayCount[Floor[samk1]]] + Calendrica`Private`HinduEpoch[]; 

(** srise1 is the IST for sunrise for the day of samk1 if the IST for samk1 falls before midnight. Otherwise 

srise1 gives the IST for sunrise for the following day. If the latter is true, then samk1 < srise1. **) 

    midnight1 = Floor[samk1] + 1; 

    (** midnight1 is the midnight following samk1. **) 

    If[month1 != month2, (** If month1!= month2, then month2 is the new month. We need the IST for the 

samkranti, the sunrise for the day of the samkranti and the Saka year for month2. **) 

      year2 = Calendrica`Private`HinduCalendarYear[rise2] - Calendrica`Private`HinduSolarEra[]; 

      samk2 = Samkranti[78 + year2, month2]; 

      srise2 = ujjainSunrise[HinduDayCount[Floor[samk2]]] + Calendrica`Private`HinduEpoch[]; 

     midnight2 = Floor[samk2] + 1]; 

    Which[(month1 == month2) && (srise1 <= samk1 < midnight1), (** If samk1 falls between srise1 

and midnight1, the Bengal rule and the DR rule will both agree. **) 

      bengalHinduSolar[month1, day1 + 1, year1],  

      month1 == month2, (** If samk1 is either before sunrise or after midnight, the Bengal calendar date is 

behind the HinduSolar calendar date by a day. **)  

      bengalHinduSolar[month1, day1, year1],  

      (** The conditions below are for month1!= month2. **) 

      srise2 <= samk2 < midnight2, bengalHinduSolar[month2, 1, year2], 

      srise1 <= samk1 < midnight1,  

      bengalHinduSolar[month1, day1 + 1, year1], (** The Bengal rule and DR rules agree unless one or 

both of the samkrantis fall between sunrise and midnight. **)             

      True, bengalHinduSolar[month1, day1, year1]]] 

 

(** Mesha samkranti falls on Gregorian day 14/4/1990 at 3h57m. (between midnight and sunrise) **) 

Input: orissaHinduSolar[ToFixed[Gregorian[4, 13, 1990]]] 

tamilHinduSolar[ToFixed[Gregorian[4, 14, 1990]]] 

malayaliHinduSolar[ToFixed[Gregorian[4, 14, 1990]]] 



 62

bengalHinduSolar[ToFixed[Gregorian[4, 15, 1990]]] 

 

Output: orissaHinduSolar[1, 1, 1912] 

tamilHinduSolar[1, 1, 1912] 

malayaliHinduSolar[9, 1, 1165] 

bengalHinduSolar[1, 1, 1912] 

 

(** Mesha samkranti falls on Gregorian day 14/4/1991 at 10h04m (between sunrise and aparahna). **) 

Input: orissaHinduSolar[ToFixed[Gregorian[4, 14, 1991]]] 

tamilHinduSolar[ToFixed[Gregorian[4, 14, 1991]]] 

malayaliHinduSolar[ToFixed[Gregorian[4, 14, 1991]]] 

bengalHinduSolar[ToFixed[Gregorian[4, 15, 1991]]] 

 

Output: orissaHinduSolar[1, 1, 1913] 

tamilHinduSolar[1, 1, 1913] 

malayaliHinduSolar[9, 1, 1166] 

bengalHinduSolar[1, 1, 1913] 

 

(** Mesha samkranti falls on Gregorian day 13/4/1992 at 16h07m (between aparahna and sunset). **) 

Input: orissaHinduSolar[ToFixed[Gregorian[4, 13, 1992]]] 

tamilHinduSolar[ToFixed[Gregorian[4, 13, 1992]]] 

malayaliHinduSolar[ToFixed[Gregorian[4, 14, 1992]]] 

bengalHinduSolar[ToFixed[Gregorian[4, 14, 1992]]] 

 

Output: orissaHinduSolar[1, 1, 1914] 

tamilHinduSolar[1, 1, 1914] 

malayaliHinduSolar[9, 1, 1167] 

bengalHinduSolar[1, 1, 1914] 

 

(** Mesha samkranti falls on Gregorian day 13/4/1993 at 22h25m (between sunset and midnight). **) 

Input: orissaHinduSolar[ToFixed[Gregorian[4, 13, 1993]]] 

tamilHinduSolar[ToFixed[Gregorian[4, 14, 1993]]] 

malayaliHinduSolar[ToFixed[Gregorian[4, 14, 1993]]] 

bengalHinduSolar[ToFixed[Gregorian[4, 14, 1993]]] 

 

Output: orissaHinduSolar[1, 1, 1915] 

tamilHinduSolar[1, 1, 1915] 
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malayaliHinduSolar[9, 1, 1168] 

bengalHinduSolar[1, 1, 1915] 

 

(**  

The function HinduLunar[date_Integer] from the Mathematica package Calendrica.m follows the 

convention that when a kshaya month occurs, the two accompanying adhika months are treated as true leap 

months. The amanta month that contains two samkramanas is treated as a suddha month instead of a dual 

month. We call this convention the DR lunar rule. Notice that the DR lunar rule and the Southern school 

rule both agree except at treating the amanta month containing the whole solar month. The HinduLunar 

function uses old Siddhantic methods to compute HinduSolarLongitude[kyTime_] (true position of the 

Sun) and HinduLunarLongitude[kyTime_] (true position of the Moon)and hence HinduSunrise[kyTime_] 

(local time for sunrise at Ujjain), LunarDay[kyTime_] (tithi), HinduNewMoon[kyTime] (new moon at or 

before input Hindu moment), HinduZodiac[kyTime_] (the solar month) and HinduCalendarYear[kyTime_] 

(Kali Yuga year).  

**) 

(**  

We have written the following functions to calculate variations of the amanta lunisolar calendar. They are 

the amantaEastHinduLunar[date_Integer], amantaNorthWestHinduLunar[date_Integer] and 

amantaSouthHinduLunar[date_Integer] functions that follow the Eastern school, the North Western school 

and the Southern school rules respectively. They are modifications of the function 

HinduLunar[date_Integer]. We have also come up with functions ujjainSunrise[kyTime_], 

IndianNewMoonAtOrBefore[kyTime_] and IndianFullMoonAtOrBefore[kyTime_] to obtain the IST for 

sunrise at Ujjain, the new moon and full moon at or before input Hindu moment. They are used in our 

written HinduLunar functions when required. However the functions HinduZodiac[kyTime_], 

LunarDay[kyTime_] and HinduCalendarYear[kyTime_] are still used. We need to implement two function 

using modern methods to find true positions of the Sun and the Moon and hence determine the correct solar 

month, the Kali Yuga year and the tithi.  

**) 

 

(** IndianNewMoonAtOrBefore[kyTime_] 

Input: Hindu moment. Output: Hindu moment.  

We're computing the IST for new moon at or before kyTime. For this function, we convert kyTime to a 

julian day number and use NewMoonAtOrBefore[jd_] to find the required new moon (in Greenwich) in 

julian day number. Then we convert this back to Hindu moment. The fractional part of this Hindu moment 

gives the IST for the required new moon.  

**) 

IndianNewMoonAtOrBefore[kyTime_] := 
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    Module[{JDmoment, newMoon, newMoonInMoment, result}, 

    JDmoment = JDFromMoment[kyTime + Calendrica`Private`HinduEpoch[]]; 

    newMoon = NewMoonAtOrBefore[JDmoment]; 

    newMoonInMoment = MomentFromJD[newMoon]; 

    result = newMoonInMoment - Calendrica`Private`HinduEpoch[] + 11/48; 

(** A julian day runs from noon to the next noon. When required new moon (= result) falls on the same 

julian day as kyTime does, result will be returned even if the time of result is later than that of the kyTime. 

This is not our desired output. Hence we implement the If condition. If result is later than kyTime, find the 

last new moon before result. Then let the last new moon be the result and return result. Otherwise, return 

result straightaway. **) 

    If[result > kyTime, 

           newMoon = NewMoonAtOrBefore[JDmoment - 1]; 

           newMoonInMoment = MomentFromJD[newMoon]; 

           newMoonInMoment - Calendrica`Private`HinduEpoch[] + 11/48, result]] 

 

(** According to Condensed Ephemeris of Planets' Positions according to 'nirayana' or sidereal system 

from 1971 to 1981 AD, some of the IST for new moons in AD 1981 fall on 4/5/1981 at 9h49m, on 

2/6/1981 at 17h2m and on 2/7/1981 at 0h33m. **) 

Input: Gregorian[Floor[IndianNewMoonAtOrBefore[ 

         ujjainSunrise[HinduDayCount[ToFixed[Gregorian[6, 2, 1981]]]]] +  

        Calendrica`Private`HinduEpoch[]]] 

 

Output: Gregorian[5, 4, 1981] 

 

Input: TimeOfDay[IndianNewMoonAtOrBefore[ 

ujjainSunrise[HinduDayCount[ToFixed[Gregorian[6, 2, 1981]]]]] +  

Calendrica`Private`HinduEpoch[]] 

 

Output: TimeOfDay[9, 49, 20.5944] 

 

Input: Gregorian[Floor[IndianNewMoonAtOrBefore[ 

         ujjainSunrise[HinduDayCount[ToFixed[Gregorian[7, 1, 1981]]]]] +  

        Calendrica`Private`HinduEpoch[]]] 

 

Output: Gregorian[6, 2, 1981] 

 

Input: TimeOfDay[IndianNewMoonAtOrBefore[ 
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       ujjainSunrise[HinduDayCount[ToFixed[Gregorian[7, 1, 1981]]]]] +  

      Calendrica`Private`HinduEpoch[]] 

 

Output: TimeOfDay[17, 1, 55.2785] 

 

Input: Gregorian[Floor[IndianNewMoonAtOrBefore[ 

ujjainSunrise[HinduDayCount[ToFixed[Gregorian[7, 2, 1981]]]]] +  

        Calendrica`Private`HinduEpoch[]]] 

 

Output: Gregorian[7, 2, 1981] 

 

Input: TimeOfDay[IndianNewMoonAtOrBefore[ 

ujjainSunrise[HinduDayCount[ToFixed[Gregorian[7, 2, 1981]]]]] +  

Calendrica`Private`HinduEpoch[]] 

 

Output: TimeOfDay[0, 33, 16.7785] 

 

(**  

amantaSouthHinduLunar[date_Integer] 

Input: Fixed number for RD date. Output: Chaitra calendar date of day at sunrise on RD date when the 

Southern school rule is used to handle the kshaya month. Note that this function still follows the DR lunar 

rule because we need to write a function to find the IST for tithis using true positions of the Sun and the 

Moon.  

**) 

amantaSouthHinduLunar[date_Integer] := 

    Module[{kyTime, rise, day, leapDay, lastNewMoon, nextNewMoon, solarMonth,  

      leapMonth, month, year}, 

    kyTime = HinduDayCount[date]; 

    rise = ujjainSunrise[kyTime]; 

    day = Calendrica`Private`LunarDay[rise]; (** day gives the tithi no at sunrise on RD date. 1 to 15 are 

tithis for the bright half and  16 to 30 are tithis for the dark half. **) 

    leapDay = day == Calendrica`Private`LunarDay[ujjainSunrise[kyTime - 1]]; 

(** If tithi number at sunrise on RD (date - 1) = day, then day is a leap day and LeapDay is TRUE. 

Otherwise, leapDay is FALSE. **) 

    lastNewMoon = IndianNewMoonAtOrBefore[rise]; 

    nextNewMoon = IndianNewMoonAtOrBefore[Floor[lastNewMoon] + 35]; 

    solarMonth = Calendrica`Private`HinduZodiac[lastNewMoon]; 
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    leapMonth = solarMonth == Calendrica`Private`HinduZodiac[nextNewMoon]; 

(** If solarMonth = solarMonth in which nextNewMoon falls, then lastNewMoon is an adhika month and 

leapMonth is TRUE. Otherwise leapMonth is FALSE. **) 

    month = Calendrica`Private`AdjustedMod[solarMonth + 1, 12]; 

    (** month gives the lunar month number. **) 

    year = Calendrica`Private`HinduCalendarYear[nextNewMoon] –  

               Calendrica`Private`HinduLunarEra[] - If[leapMonth && month == 1, -1, 0]; 

    (** year returns the Vikram year in which kyTime falls. **) 

    amantaSouthHinduLunar[month, leapMonth, day, leapDay, year]] 

 

(**  

checkSkippedRasiForEasternRule[kyTime_] 

Input: Hindu moment. Output: List{skippedrasi, leaprasi}. 

We're determining whether a kshaya month occurs at or after kyTime in the Vikram year in which kyTime 

falls. If kshaya month occurs, find the rasis that correspond to the kshaya month and the 2nd accompanying 

adhika month respectively. In the function, we denote them by skippedrasi and leaprasi.  

**) 

checkSkippedRasiForEasternRule[kyTime_] := 

    Module[{lastNewMoon, solarMonth, nextNewMoon, nextsolarMonth, skippedrasi, 

       leaprasi}, 

    lastNewMoon = IndianNewMoonAtOrBefore[kyTime]; 

    solarMonth = Calendrica`Private`HinduZodiac[lastNewMoon]; 

    nextNewMoon = IndianNewMoonAtOrBefore[Floor[lastNewMoon] + 35]; 

    nextsolarMonth = Calendrica`Private`HinduZodiac[nextNewMoon]; 

    skippedrasi = 0; 

    leaprasi = 0; 

(** Kshaya month possible only for solarMonths 8, 9 and 10. While loop searches for skippedrasi in 

solarMonths 8, 9 and 10. If solarMonth >= 11, there is no kshaya month at or after kyTime. **) 

   While[solarMonth < 11, 

      If[nextsolarMonth == solarMonth + 2, skippedrasi = solarMonth + 1; 

        (** While loop below searches ahead for leaprasi when skippedrasi != 0. **) 

        While[nextsolarMonth != solarMonth, 

          solarMonth = nextsolarMonth; 

          nextNewMoon = IndianNewMoonAtOrBefore[Floor[nextNewMoon] + 35]; 

          nextsolarMonth = Calendrica`Private`HinduZodiac[nextNewMoon]]; 

        leaprasi = solarMonth; 

        (** To stop iteration. **) 



 67

        Break[]]; 

      solarMonth = nextsolarMonth; 

      nextNewMoon = IndianNewMoonAtOrBefore[Floor[nextNewMoon] + 35]; 

      nextsolarMonth = Calendrica`Private`HinduZodiac[nextNewMoon]]; 

    (** If kshaya month does not occur, skippedrasi = leaprasi = 0. **) 

    {skippedrasi, leaprasi}] 

 

(** For Saka 1904 (AD 1982 - 1983), the kshaya month is lunar month 11 because there is no new moon 

falling in solar month 10. The 2nd adhika month is lunar month 12 that corresponds to solar month 11. **) 

Input: checkSkippedRasiForEasternRule[HinduDayCount[ToFixed[Gregorian[9, 17, 1982]]]] 

 

Output: {10, 11} 

 

(**  

amantaEastHinduLunar[date_Integer] 

Input: Fixed number for RD date. Output: Chaitra calendar date of day at sunrise on RD date when the 

Eastern school rule is used to handle the kshaya month.  

**) 

amantaEastHinduLunar[date_Integer] :=   

    Module[{kyTime, rise, day, leapDay, lastNewMoon, nextNewMoon, solarMonth,  

      leapMonth, startkyTime, skippedrasi, leaprasi, month, year}, 

    kyTime = HinduDayCount[date]; 

    rise = ujjainSunrise[kyTime]; 

    day = Calendrica`Private`LunarDay[rise]; 

    leapDay = day == Calendrica`Private`LunarDay[ujjainSunrise[kyTime - 1]]; 

    lastNewMoon = IndianNewMoonAtOrBefore[rise]; 

    nextNewMoon = IndianNewMoonAtOrBefore[Floor[lastNewMoon] + 35]; 

    solarMonth = Calendrica`Private`HinduZodiac[lastNewMoon]; 

    nextsolarMonth = Calendrica`Private`HinduZodiac[nextNewMoon]; 

    leapMonth = solarMonth == nextsolarMonth; 

(** A kshaya month is possible only in solarMonths 8, 9 and 10. When there is a kshaya month, we assume 

that the two adhika months that come with it fall between solarMonth 6 to solarMonth 1 of the following 

nirayana year inclusive. If solarMonth = 1, check whether kshaya month occurred in the previous nirayana 

year. If 9 <= solarMonth <= 12, check whether kshaya month occurs in the current nirayana year. 

Otherwise, do not check for occurrence of kshaya month. **) 

    Which[solarMonth == 1, startkyTime = kyTime - 191, solarMonth >= 9,  

      startkyTime = kyTime - (solarMonth - 7)*32]; 



 68

    If[2 <= solarMonth <= 8, skippedrasi = leaprasi = 0, 

      skippedrasi = First[checkSkippedRasiForEasternRule[startkyTime]]; 

      leaprasi = Last[checkSkippedRasiForEasternRule[startkyTime]]]; (** skippedrasi determines 

whether kshaya month occurs. If yes, both the skippedrasi and leaprasi != 0. Otherwise, skippedrasi = 

leaprasi = 0. **) 

    If[skippedrasi != 0, (** The following conditions are for kshaya month and the 2nd adhika month 

falling in the same nirayana year. **) 

      If[skippedrasi < leaprasi, If[skippedrasi < solarMonth < leaprasi, month = solarMonth,  

          If[leapMonth && solarMonth == leaprasi,  

            leapMonth = ! (solarMonth == nextsolarMonth); month = solarMonth, 

            month = Calendrica`Private`AdjustedMod[solarMonth + 1, 12]]], 

        (** The following conditions are for the 2nd adhika month falling in solarMonth 1 of the following 

nirayana year. **) 

        If[(solarMonth > skippedrasi) || (solarMonth < leaprasi),  

          month = solarMonth, If[leapMonth && solarMonth == leaprasi,  

            leapMonth = ! (solarMonth == nextsolarMonth); month = solarMonth, 

            month = Calendrica`Private`AdjustedMod[solarMonth + 1, 12]]]], 

      month = Calendrica`Private`AdjustedMod[solarMonth + 1, 12]]; 

    If[month == solarMonth, year = Calendrica`Private`HinduCalendarYear[lastNewMoon] -  

          Calendrica`Private`HinduLunarEra[] - If[leapMonth && month == 1, -1, 0],  

      year = Calendrica`Private`HinduCalendarYear[nextNewMoon] -  

                 Calendrica`Private`HinduLunarEra[] - If[leapMonth && month == 1, -1, 0]]; 

    amantaEastHinduLunar[month, leapMonth, day, leapDay, year]] 

 

(** checkSkippedRasiForNorthWesternRule[kyTime_] 

Input: Hindu moment. Output: List{skippedrasi, leaprasi}.  

We're determining whether a kshaya month occurs at or after kyTime in the Vikram year in which kyTime 

falls. If kshaya month occurs, find the rasis that correspond to the kshaya month and the 1st accompanying 

adhika month respectively. In the function, we denote them by skippedrasi and leaprasi.  

**) 

checkSkippedRasiForNorthWesternRule[kyTime_] := 

    Module[{lastNewMoon, solarMonth, nextNewMoon, nextsolarMonth, skippedrasi, 

       leaprasi, newMoon, lastsolarMonth, startsolarMonth}, 

    lastNewMoon = IndianNewMoonAtOrBefore[kyTime]; 

    solarMonth = Calendrica`Private`HinduZodiac[lastNewMoon]; 

    nextNewMoon = IndianNewMoonAtOrBefore[Floor[lastNewMoon] + 35]; 

    nextsolarMonth = Calendrica`Private`HinduZodiac[nextNewMoon]; 
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    skippedrasi = 0; 

    leaprasi = 0; 

    newMoon = lastNewMoon; 

(** Kshaya month possible only for solarMonths 8, 9 and 10. While loop searches for skippedrasi in 

solarMonths 8, 9 and 10. If solarMonth >= 11, there is no kshaya month at or after kyTime. **) 

    While[solarMonth < 11,  

        If[nextsolarMonth == solarMonth + 2, skippedrasi = solarMonth + 1; 

        lastNewMoon = IndianNewMoonAtOrBefore[Floor[newMoon] - 28]; 

        lastsolarMonth = Calendrica`Private`HinduZodiac[lastNewMoon]; 

        (** While loop below searches behind for leaprasi when skippedrasi != 0. **) 

        While[lastsolarMonth != solarMonth, 

          solarMonth = lastsolarMonth; 

          lastNewMoon = IndianNewMoonAtOrBefore[Floor[lastNewMoon] - 28]; 

          lastsolarMonth = Calendrica`Private`HinduZodiac[lastNewMoon]]; 

        leaprasi = solarMonth; 

        (** To stop iteration. **) 

        Break[]]; 

      newMoon = nextNewMoon; 

      solarMonth = nextsolarMonth; 

      nextNewMoon = IndianNewMoonAtOrBefore[Floor[nextNewMoon] + 35]; 

      nextsolarMonth = Calendrica`Private`HinduZodiac[nextNewMoon]]; 

    (** If kshaya month does not occur, skippedrasi = leaprasi = 0. **) 

    {skippedrasi, leaprasi}] 

 

(** For Saka 1904 (AD 1982 - 1983), the kshaya month is lunar month 11 because there is no new moon 

falling in solar month 10. The 1st adhika month is lunar month 7 that corresponds to solar month 6. **) 

Input: checkSkippedRasiForNorthWesternRule[HinduDayCount[ToFixed[Gregorian[9, 17, 1982]]]] 

 

Output: {10, 6} 

 

(**  

amantaNorthWestHinduLunar[date_Integer] 

Input: Fixed number for RD date. Output: Chaitra calendar date of day at sunrise on RD date when the 

North Western school rule is used to handle the kshaya month.  

**) 

amantaNorthWestHinduLunar[date_Integer] :=    

    Module[{kyTime, rise, day, leapDay, lastNewMoon, nextNewMoon, solarMonth,  
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      leapMonth, startkyTime, skippedrasi, leaprasi, month, year}, 

    kyTime = HinduDayCount[date]; 

    rise = ujjainSunrise[kyTime]; 

    day = Calendrica`Private`LunarDay[rise]; 

    leapDay = day == Calendrica`Private`LunarDay[ujjainSunrise[kyTime - 1]]; 

    lastNewMoon = IndianNewMoonAtOrBefore[rise]; 

    nextNewMoon = IndianNewMoonAtOrBefore[Floor[lastNewMoon] + 35]; 

    solarMonth = Calendrica`Private`HinduZodiac[lastNewMoon]; 

    nextsolarMonth = Calendrica`Private`HinduZodiac[nextNewMoon]; 

    leapMonth = solarMonth == nextsolarMonth; 

(** A kshaya month is possible only in solarMonths 8, 9 and 10. When there is a kshaya month, we assume 

that the two adhika months that come with it fall between solarMonth 6 to solarMonth 1 of the following 

nirayana year inclusive. If 6 <= solarMonth <= 10, check whether kshaya month occurred in the current 

nirayana year. Otherwise, do not check for occurrence of kshaya month. **) 

    If[6 <= solarMonth <= 10, startkyTime = kyTime + (7 - solarMonth)*29; 

      skippedrasi = First[checkSkippedRasiForNorthWesternRule[startkyTime]]; 

      leaprasi = Last[checkSkippedRasiForNorthWesternRule[startkyTime]],  skippedrasi = leaprasi = 

0]; 

(** skippedrasi determines whether kshaya month occurs. If yes, both the skippedrasi and leaprasi != 0. 

Otherwise, skippedrasi = leaprasi = 0. **) 

    If[skippedrasi != 0,  

(** leaprasi is always < skippedrasi and both must fall in the same nirayana year. **) 

      If[(leaprasi <= solarMonth < skippedrasi) && (! (leapMonth = solarMonth == nextsolarMonth)),  

        month = solarMonth + 2, If[solarMonth == leaprasi,  

         leapMonth = ! (solarMonth == nextsolarMonth)]; 

        month = Calendrica`Private`AdjustedMod[solarMonth + 1, 12]], 

      month = Calendrica`Private`AdjustedMod[solarMonth + 1, 12]]; 

    year = Calendrica`Private`HinduCalendarYear[nextNewMoon] -  

               Calendrica`Private`HinduLunarEra[] - If[leapMonth && month == 1, -1, 0]; 

    amantaNorthWestHinduLunar[month, leapMonth, day, leapDay, year]] 

 

(** For Saka 1904 (AD 1982 - 1983), the kshaya month is lunar month 11. The 1st adhika month is lunar 

month 7. The 2nd adhika month is lunar month 12. **) 

 (** This is under the Southern school rule. **) 

Input: amantaSouthHinduLunar[ToFixed[Gregorian[9, 18, 1982]]]  

amantaSouthHinduLunar[ToFixed[Gregorian[10, 17, 1982]]] 

amantaSouthHinduLunar[ToFixed[Gregorian[11, 16, 1982]]] 
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amantaSouthHinduLunar[ToFixed[Gregorian[12, 16, 1982]]] 

amantaSouthHinduLunar[ToFixed[Gregorian[1, 15, 1983]]]  

amantaSouthHinduLunar[ToFixed[Gregorian[2, 13, 1983]]]  

amantaSouthHinduLunar[ToFixed[Gregorian[3, 15, 1983]]] 

amantaSouthHinduLunar[ToFixed[Gregorian[4, 14, 1983]]] 

 

Output:  amantaSouthHinduLunar[7, True, 1, False, 2039] 

amantaSouthHinduLunar[7, False, 1, False, 2039] 

amantaSouthHinduLunar[8, False, 1, False, 2039] 

amantaSouthHinduLunar[9, False, 1, False, 2039] 

amantaSouthHinduLunar[10, False, 1, False, 2039] 

amantaSouthHinduLunar[12, True, 1, False, 2039] 

amantaSouthHinduLunar[12, False, 1, False, 2039] 

amantaSouthHinduLunar[1, False, 1, False, 2040] 

 

(** This is under the Eastern school rule. **) 

Input: amantaEastHinduLunar[ToFixed[Gregorian[9, 18, 1982]]] 

amantaEastHinduLunar[ToFixed[Gregorian[10, 17, 1982]]] 

amantaEastHinduLunar[ToFixed[Gregorian[11, 16, 1982]]] 

amantaEastHinduLunar[ToFixed[Gregorian[12, 16, 1982]]] 

amantaEastHinduLunar[ToFixed[Gregorian[1, 15, 1983]]] 

amantaEastHinduLunar[ToFixed[Gregorian[2, 13, 1983]]] 

amantaEastHinduLunar[ToFixed[Gregorian[3, 15, 1983]]] 

amantaEastHinduLunar[ToFixed[Gregorian[4, 14, 1983]]] 

 

Output: amantaEastHinduLunar[7, True, 1, False, 2039] 

amantaEastHinduLunar[7, False, 1, False, 2039] 

amantaEastHinduLunar[8, False, 1, False, 2039] 

amantaEastHinduLunar[9, False, 1, False, 2039] 

amantaEastHinduLunar[10, False, 1, False, 2039] 

amantaEastHinduLunar[11, False, 1, False, 2039] 

amantaEastHinduLunar[12, False, 1, False, 2039] 

amantaEastHinduLunar[1, False, 1, False, 2040] 

 

(** This is under the North Western school rule. **) 

Input: amantaNorthWestHinduLunar[ToFixed[Gregorian[9, 18, 1982]]] 

amantaNorthWestHinduLunar[ToFixed[Gregorian[10, 17, 1982]]] 
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amantaNorthWestHinduLunar[ToFixed[Gregorian[11, 16, 1982]]] 

amantaNorthWestHinduLunar[ToFixed[Gregorian[12, 16, 1982]]] 

amantaNorthWestHinduLunar[ToFixed[Gregorian[1, 15, 1983]]] 

amantaNorthWestHinduLunar[ToFixed[Gregorian[2, 13, 1983]]] 

amantaNorthWestHinduLunar[ToFixed[Gregorian[3, 15, 1983]]] 

amantaNorthWestHinduLunar[ToFixed[Gregorian[4, 14, 1983]]] 

 

Output: amantaNorthWestHinduLunar[7, False, 1, False, 2039] 

amantaNorthWestHinduLunar[8, False, 1, False, 2039] 

amantaNorthWestHinduLunar[9, False, 1, False, 2039] 

amantaNorthWestHinduLunar[10, False, 1, False, 2039] 

amantaNorthWestHinduLunar[11, False, 1, False, 2039] 

amantaNorthWestHinduLunar[12, True, 1, False, 2039] 

amantaNorthWestHinduLunar[12, False, 1, False, 2039] 

amantaNorthWestHinduLunar[1, False, 1, False, 2040] 

 

(**  

IndianFullMoonAtOrBefore[kyTime_] 

Input: Hindu moment. Output: Hindu moment.  

We're computing the IST for full moon at or before kyTime. For this function, we convert kyTime to a 

julian day number and use FullMoonAtOrBefore[jd_] to find the required full moon (in Greenwich) in 

julian day number. Then we convert this back to Hindu moment. The fractional part of this Hindu moment 

gives the IST for the required full moon.  

**) 

IndianFullMoonAtOrBefore[kyTime_] := 

    Module[{JDmoment, fullMoon, fullMoonInMoment, result}, 

    JDmoment = JDFromMoment[kyTime + Calendrica`Private`HinduEpoch[]]; 

    fullMoon = FullMoonAtOrBefore[JDmoment]; 

    fullMoonInMoment = MomentFromJD[fullMoon]; 

    result = fullMoonInMoment - Calendrica`Private`HinduEpoch[] + 11/48; 

(** A julian day runs from noon to the next noon. When required full moon (= result) falls on the same 

julian day as kyTime does, result will be returned even if the time of result is later than that of the kyTime. 

This is not our desired output. Hence we implement the If condition. If result is later than kyTime, find the 

last full moon before result. Then let the last full moon be the result and return result. Otherwise, return 

result straightaway. **) 

    If[result > kyTime, 

           fullMoon = FullMoonAtOrBefore[JDmoment - 1]; 
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           fullMoonInMoment = MomentFromJD[fullMoon]; 

           fullMoonInMoment - Calendrica`Private`HinduEpoch[] + 11/48,  

      result]] 

 

(** According to Condensed Ephemeris of Planets' Positions according to 'nirayana' or sidereal system 

from 1971 to 1981 AD, some of the IST for full moons in AD 1981 fall on 14/9/1981 at 8h39m, on 

13/10/1981 at 18h19m and on 12/11/1981 at 3h56m. **) 

Input: Gregorian[Floor[IndianFullMoonAtOrBefore[ 

ujjainSunrise[HinduDayCount[ToFixed[Gregorian[10, 13, 1981]]]]] +  

        Calendrica`Private`HinduEpoch[]]] 

 

Output: Gregorian[9, 14, 1981] 

 

Input: TimeOfDay[IndianFullMoonAtOrBefore[ 

       ujjainSunrise[HinduDayCount[ToFixed[Gregorian[10, 13, 1981]]]]] +  

      Calendrica`Private`HinduEpoch[]] 

 

Output: TimeOfDay[8, 38, 47.451] 

 

Input: Gregorian[Floor[IndianFullMoonAtOrBefore[ 

         ujjainSunrise[HinduDayCount[ToFixed[Gregorian[11, 11, 1981]]]]] +  

        Calendrica`Private`HinduEpoch[]]] 

 

Output: Gregorian[10, 13, 1981] 

 

Input: TimeOfDay[IndianFullMoonAtOrBefore[ 

ujjainSunrise[HinduDayCount[ToFixed[Gregorian[11, 11, 1981]]]]] +  

      Calendrica`Private`HinduEpoch[]] 

 

Output: TimeOfDay[18, 19, 42.6265] 

 

Input: Gregorian[Floor[IndianFullMoonAtOrBefore[ 

         ujjainSunrise[HinduDayCount[ToFixed[Gregorian[11, 12, 1981]]]]] +  

        Calendrica`Private`HinduEpoch[]]] 

 

Output: Gregorian[11, 12, 1981] 
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Input: TimeOfDay[IndianFullMoonAtOrBefore[ 

       ujjainSunrise[HinduDayCount[ToFixed[Gregorian[11, 12, 1981]]]]] +  

Calendrica`Private`HinduEpoch[]] 

 

Output: TimeOfDay[3, 56, 59.4279] 
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